This project is based on our discovery that genetic mutations in molecules that control the programmed death, or apoptosis, of lymphocytes is responsible for the Autoimmune Lymphoproliferative Syndrome (ALPS). ALPS is a disease affecting children that leads to loss of normal lymphocyte homeostasis leading to swollen lymph glands and organs. Because lymphocytes are the primary cell mediating immune reactions, this excess of lymphocytes leads to a pathological autoimmune attack on the patient's own tissues. We have identified mutations in a death-inducing cell surface receptor termed Fas (also known as APO-1 or CD95) and in other molecules that regulate apoptosis. We have also identified a new disease entity called, """"""""Caspase-eight deficiency state"""""""" (CEDS) that is due to a genetic deficiency of caspase-8. This disease involves a loss of apoptotic control and lymphocyte expansion combined with a failure of normal lymphocyte activation through the antigen receptors. The consequence of this is a profound immunodeficiency state and the new insight the capase-8, heretofore regarded solely as a cell death inducing protease, has a key role in antigen receptor signaling particularly for the induction of a gene regulatory factor called NF-kB. These studies promise to provide new insights into the molecular mechanisms that underlie autoimmune and immunodeficiency disease as well as revealing crucial steps in the pathway of programmed cell death in lymphocytes. We are presently studying a class of these patients called ALPS Type III which do not display mutations in the Fas receptor, its ligand (Fas ligand), or caspase-10. We are using a variety of molecular analyses to determine the gene mutation that underlies disease in ALPS Type III. Our guiding principle is that patient specimens from poorly understood diseases can yield valuable insights into disease mechanisms and normal physiology if investigated properly at the molecular level.
Showing the most recent 10 out of 37 publications