While the central role of transcription in cell and molecular biology has been recognized for over 50 years, there has been no successful approach to the study of what controls the fidelity of the process or the consequences of infidelity in transcription. We developed methods to monitor the fidelity of transcription and the functions that contribute to the accuracy of that process. One such method involves monitoring the fidelity of retrotransposition. We isolated mutations in a subunit of RNA polymerase that reduce the fidelity of retrotransposition and demonstrated that they directly affect the accuracy of transcription. These are the first eukaryotic mutations known to reduce the fidelity of transcription. We also developed a screen for RNA polymerase mutants that increase the frequency of slippage during transcription. This class of transcription error has been shown to occur in bacteria and humans, but the features that avoid such errors have not been determined. With that screen we isolated the first mutations that increase errors of this type. We are investigating the biological consequences of increased transcription error rates. We have demonstrated that the combination of an error prone RNA polymerase with a defect in editing transcription errors is a lethal combination.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Intramural Research (Z01)
Project #
1Z01BC010992-01
Application #
7733396
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
2008
Total Cost
$532,857
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Santoyo, Gustavo; Strathern, Jeffrey N (2008) Non-homologous end joining is important for repair of Cr(VI)-induced DNA damage in Saccharomyces cerevisiae. Microbiol Res 163:113-9
Kireeva, Maria L; Nedialkov, Yuri A; Cremona, Gina H et al. (2008) Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation. Mol Cell 30:557-66