Matrix Metalloproteinases and their natural inhibitors (TIMPs) regulate the dissolution of the extracellular matrix in growth and development, inflammatory and neoplastic diseases. The objective of this project is to investigate how cells orchestrate the episodic local dissolution of extracellular matrix by the orderly expression and function of MMPs and their inhibitors. Initially our studies are aimed at determining which MMPs are involved in the degradation of a single substrate (reconstituted fibrils of type 1 collagen) by a single cell type. To address this question we are employing a variety of approaches including enzyme identification techniques by neo- epitope finger-printing of substrate cleavage sites, blocking by group selective synthetic inhibitors or by enzyme-specific antibodies. In order to monitor the progression of conversion of MMP zymogens (primarily MMP-1) to the catalytically active form, antibodies which can recognize and discriminate between the two forms are being developed. A body of evidence suggests that MMP activity and MMP zymogen activation are regulated and controlled by TIMPs. To assess the role and function of TIMPs (specifically TIMP-1 and TIMP- 2) we are developing strategies aimed at replacement of the murine TIMP-1 and/or TIMP-2 genes with either null mutants, conditional null mutants or mutants with altered function.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Intramural Research (Z01)
Project #
1Z01DE000676-01
Application #
2452836
Study Section
Special Emphasis Panel (ODIR)
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
1996
Total Cost
Indirect Cost
Name
National Institute of Dental & Craniofacial Research
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Szabova, Ludmila; Yamada, Susan S; Wimer, Helen et al. (2009) MT1-MMP and type II collagen specify skeletal stem cells and their bone and cartilage progeny. J Bone Miner Res 24:1905-16
Markovic, D S; Vinnakota, K; Chirasani, S et al. (2009) Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci U S A 106:12530-5
Tsutsui, T W; Riminucci, M; Holmbeck, Kenn et al. (2008) Development of craniofacial structures in transgenic mice with constitutively active PTH/PTHrP receptor. Bone 42:321-31
Ingvarsen, Signe; Madsen, Daniel H; Hillig, Thore et al. (2008) Dimerization of endogenous MT1-MMP is a regulatory step in the activation of the 72-kDa gelatinase MMP-2 on fibroblasts and fibrosarcoma cells. Biol Chem 389:943-53
Szabova, L; Chrysovergis, K; Yamada, S S et al. (2008) MT1-MMP is required for efficient tumor dissemination in experimental metastatic disease. Oncogene 27:3274-81
Shi, Joanne; Son, Mi-Young; Yamada, Susan et al. (2008) Membrane-type MMPs enable extracellular matrix permissiveness and mesenchymal cell proliferation during embryogenesis. Dev Biol 313:196-209
Michienzi, Stefano; Cherman, Natasha; Holmbeck, Kenn et al. (2007) GNAS transcripts in skeletal progenitors: evidence for random asymmetric allelic expression of Gs alpha. Hum Mol Genet 16:1921-30
Atkinson, Jeffrey J; Toennies, Holly M; Holmbeck, Kenn et al. (2007) Membrane type 1 matrix metalloproteinase is necessary for distal airway epithelial repair and keratinocyte growth factor receptor expression after acute injury. Am J Physiol Lung Cell Mol Physiol 293:L600-10
Madsen, Daniel H; Engelholm, Lars H; Ingvarsen, Signe et al. (2007) Extracellular collagenases and the endocytic receptor, urokinase plasminogen activator receptor-associated protein/Endo180, cooperate in fibroblast-mediated collagen degradation. J Biol Chem 282:27037-45
Basile, John R; Holmbeck, Kenn; Bugge, Thomas H et al. (2007) MT1-MMP controls tumor-induced angiogenesis through the release of semaphorin 4D. J Biol Chem 282:6899-905

Showing the most recent 10 out of 40 publications