We have continued our study of biological macromolecules dissolved in a very dilute, nematic liquid crystalline (LC) phase. Study of chemical shift aniostropy (CSA) of proton, carbon and nitrogen backbone atoms in the protein ubiquitin, dissolved in a LC medium, revealed distinct correlations between CSA and protein secondary structure. A method has been developed that quantitatively predicts alignment of macromolecules of known shape for the case where the LC particles are nearly neutral. This information confirmed the monomeric form of the anti-HIV protein cyanovirin-N in solution. Methods have been developed that permit measurement of dipolar couplings in slowly tumbling macromolecules. We have shown that in favorable cases it is possible to define the three-dimensional structure of a protein backbone solely on the basis of its dipolar couplings, provided that measurements can be performed in two different LC media. This development holds potential to significantly decrease the time required for protein structure determination. Dipolar couplings were used for determination of the structure of the RecA binding protein DinI, and for obtaining a high-resolution structure of the DNA dodecamer d(CGCGAATTCGCG)2.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Intramural Research (Z01)
Project #
1Z01DK029020-16
Application #
6432089
Study Section
(LCP)
Project Start
Project End
Budget Start
Budget End
Support Year
16
Fiscal Year
2000
Total Cost
Indirect Cost
Name
U.S. National Inst Diabetes/Digst/Kidney
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Lee, Jung Ho; Ying, Jinfa; Bax, Ad (2016) Quantitative evaluation of positive ? angle propensity in flexible regions of proteins from three-bond J couplings. Phys Chem Chem Phys 18:5759-70
Vogeli, Beat; Yao, Lishan; Bax, Ad (2008) Protein backbone motions viewed by intraresidue and sequential HN-Halpha residual dipolar couplings. J Biomol NMR 41:17-28
Chill, Jordan H; Louis, John M; Delaglio, Frank et al. (2007) Local and global structure of the monomeric subunit of the potassium channel KcsA probed by NMR. Biochim Biophys Acta 1768:3260-70
Ying, Jinfa; Chill, Jordan H; Louis, John M et al. (2007) Mixed-time parallel evolution in multiple quantum NMR experiments: sensitivity and resolution enhancement in heteronuclear NMR. J Biomol NMR 37:195-204
Grishaev, Alexander; Ying, Jinfa; Bax, Ad (2006) Pseudo-CSA restraints for NMR refinement of nucleic acid structure. J Am Chem Soc 128:10010-1
Ying, Jinfa; Grishaev, Alexander; Bryce, David L et al. (2006) Chemical shift tensors of protonated base carbons in helical RNA and DNA from NMR relaxation and liquid crystal measurements. J Am Chem Soc 128:11443-54
Ying, Jinfa; Bax, Ad (2006) 2'-hydroxyl proton positions in helical RNA from simultaneously measured heteronuclear scalar couplings and NOEs. J Am Chem Soc 128:8372-3
Chill, Jordan H; Louis, John M; Miller, Christopher et al. (2006) NMR study of the tetrameric KcsA potassium channel in detergent micelles. Protein Sci 15:684-98
Ying, Jinfa; Grishaev, Alexander; Bax, Ad (2006) Carbon-13 chemical shift anisotropy in DNA bases from field dependence of solution NMR relaxation rates. Magn Reson Chem 44:302-10
Dam, Julie; Baber, James; Grishaev, Alexander et al. (2006) Variable dimerization of the Ly49A natural killer cell receptor results in differential engagement of its MHC class I ligand. J Mol Biol 362:102-13

Showing the most recent 10 out of 67 publications