Focal segmental glomerulosclerosis (FSGS) is a clinical-pathologic syndromes characterized by the accumulation of fibrotic proteins in glomeruli, initially involving only some glomeruli (focal) and involving portions (segments) of the affected glomeruli. FSGS can be classified as follows: idiopathic FSGS, genetic FSGS and post-adaptive FSGS (associated with glomerular hypertrophy and hyperfiltration, and due to reduced renal mass, renal toxins, obesity, and sickle cell disease). A related syndrome is collapsing glomerulopathy, associated with podocyte hyperplasia whereas FSGS is associated with podocyte depletion. Collapsing glomerulopathy can be classified as HIV-associated or idiopathic.? ? The incidence of idiopathic FSGS is increased by a factor of 4 in African Americans, and the incidence of HIV-associated collapsing glomerulpathy is increased by a factor of 18 in African Americans. We are engaged in genetic studies to identify FSGS risk genes. We have found four genes to date: WT1 (Wims tumor-1), WIT1 (Wilms tumor interacting gene-1), PDSS2 (enzyme in the ubiquinone synthesis pathway) land NPHS2 (podocin).? ? A related project pursues that hypothesis that other scarring disorders which are more common in individuals of African descent are associated with genetic mutations. We have identified a number of families of diverse geographical ancestry with familial keloids, and will use genome scans to identify the responsible locus.? ? In order to identify causes of idiopathic collapsing glomerulopathy, we have initiated studies to identify possible viral causes, using blood and urine derived DNA and RNA applied to a viral gene chip.? ? Our progress during the past year included the following: ? ? 1) We completed and published our identification, using admixture mapping, of MYH9 (encoding nonmuscle myosin IIA) as a major effect risk factor for FSGS and HIV-associated collapsing glomerulopathy. Current efforts include the following: ? - identifcation of the risk variant (by genomic sequencing and by sequencing of transcripts from glomeruli and urine-derived podocytes)? - extension to other kidney diseases, including lupus nephritis, sickle cell nephropathy, pre-eclampsia, and renal transplantation? - characterization of the phenotpye of hypertensive patients with kidney disease and MYH9 risk variants? - studies involving MYH9 heterozygous knock-out mice, MYH9 over-expressing mice, and podocyte-specific MYH9 knockout mice? ? 2) tentative identification of cardiotrophin-like cytokine 1 as a component of the FSGS permeability factor, involved in FSGS recurrence following renal transplantation

Project Start
Project End
Budget Start
Budget End
Support Year
13
Fiscal Year
2008
Total Cost
$520,944
Indirect Cost
City
State
Country
United States
Zip Code
Heymann, Jurgen; Winkler, Cheryl A; Hoek, Maarten et al. (2017) Therapeutics for APOL1 nephropathies: putting out the fire in the podocyte. Nephrol Dial Transplant 32:i65-i70
Okamoto, Koji; Honda, Kenjiro; Doi, Kent et al. (2015) Glypican-5 Increases Susceptibility to Nephrotic Damage in Diabetic Kidney. Am J Pathol 185:1889-98
Lee, Hewang; Abe, Yoshifusa; Lee, Icksoo et al. (2014) Increased mitochondrial activity in renal proximal tubule cells from young spontaneously hypertensive rats. Kidney Int 85:561-9
Cravedi, P; Kopp, J B; Remuzzi, G (2013) Recent progress in the pathophysiology and treatment of FSGS recurrence. Am J Transplant 13:266-74
Abe, Yoshifusa; Sakairi, Toru; Beeson, Craig et al. (2013) TGF-?1 stimulates mitochondrial oxidative phosphorylation and generation of reactive oxygen species in cultured mouse podocytes, mediated in part by the mTOR pathway. Am J Physiol Renal Physiol 305:F1477-90
Sharma, Kumar; Ix, Joachim H; Mathew, Anna V et al. (2011) Pirfenidone for diabetic nephropathy. J Am Soc Nephrol 22:1144-51
Wong, Yuen Fei; Kopp, Jeffrey B; Roberts, Catherine et al. (2011) Endogenous retinoic acid activity in principal cells and intercalated cells of mouse collecting duct system. PLoS One 6:e16770
Kopp, Jeffrey B; Winkler, Cheryl A; Nelson, George W (2010) MYH9 genetic variants associated with glomerular disease: what is the role for genetic testing? Semin Nephrol 30:409-17
Genovese, Giulio; Friedman, David J; Ross, Michael D et al. (2010) Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329:841-5
Oleksyk, Taras K; Nelson, George W; An, Ping et al. (2010) Worldwide distribution of the MYH9 kidney disease susceptibility alleles and haplotypes: evidence of historical selection in Africa. PLoS One 5:e11474

Showing the most recent 10 out of 77 publications