Bombesin-related peptides ([gastrin-releasing peptide [GRP], neuromedin B) interact with two distinct receptors (GRP-R, NMB-R) to mediate a number of effects in the gastrointestinal tract (GI), central nervous sytem (CNS) and on growth of normal and neoplastic tissues. Furthermore, two related receptors, a mammalian orphan receptor (BRS- 3), having 60% homology to GRP-R and a novel receptor in amphibians, BB-4-R has been described recently.
The aims of this project are to understand the pharmacology, molecular pharmacology, and cell biology of these receptors as well as to develop specific agonists and antagonists that can be used to determine their physiological roles. Investigations being performed include expression of these receptors in stable cell lines that resemble native receptors in their cell biology and pharmacology; investigations using site-directed mutagenesis and receptor chimeras to define receptor structural determinants of ligand selectivity and specificity for agonists and antagonists, pharmacological studies of BN-related peptides to identify selective agonists/antagonists and studies of native cells and transfected cells to define the transduction cascades of these receptors. During the last year the ability of a newly described NMB receptor antagonist PD 168368 to interact with each of the 4 classes of bombesin receptors was investigated (NPET 290,1202,1999). This compound was demonstrated to be highly selective for the NMB-R, to function as a pure antagonist, however, its potential for in vivo utility may be limited by its solubility in aqueous solutions. Using chimeric NMB-R and GRP-R as well as site-directed mutagenesis, the molecular basis for PD 16368 NMB-R selectivity is now being investigated. Preliminary results suggest that in contrast to peptide antagonists, its selectivity is determined by interacting with the transmembrane regions of the receptor. Studies are now in progress to define the exact region and amino acids involved in determining selectivity. - bombesin receptors, gastrin-releasing peptide, neuromedin B, BRS-3

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Intramural Research (Z01)
Project #
1Z01DK053100-11
Application #
6289813
Study Section
Special Emphasis Panel (DDB)
Project Start
Project End
Budget Start
Budget End
Support Year
11
Fiscal Year
1999
Total Cost
Indirect Cost
City
State
Country
United States
Zip Code
Nuche-Berenguer, Bernardo; Jensen, R T (2015) Gastrointestinal hormones/neurotransmitters and growth factors can activate P21 activated kinase 2 in pancreatic acinar cells by novel mechanisms. Biochim Biophys Acta 1853:2371-82
Alves, Bryce N; Marshall, Kristen; Tamang, David L et al. (2009) Lipid-dependent cytotoxicity by the lipase PLRP2 and by PLRP2-positive cytotoxic T lymphocytes (CTLs). Cell Biochem Funct 27:296-308
Berna, Marc J; Tapia, Jose A; Sancho, Veronica et al. (2009) Gastrointestinal growth factors and hormones have divergent effects on Akt activation. Cell Signal 21:622-38
Alves, Bryce N; Leong, Jeff; Tamang, David L et al. (2009) Pancreatic lipase-related protein 2 (PLRP2) induction by IL-4 in cytotoxic T lymphocytes (CTLs) and reevaluation of the negative effects of its gene ablation on cytotoxicity. J Leukoc Biol 86:701-12
Gonzalez, Nieves; Nakagawa, Tomoo; Mantey, Samuel A et al. (2009) Molecular basis for the selectivity of the mammalian bombesin peptide, neuromedin B, for its receptor. J Pharmacol Exp Ther 331:265-76
Moody, Terry W; Pradhan, Tapas; Mantey, Samuel A et al. (2008) Bombesin marine toxin conjugates inhibit the growth of lung cancer cells. Life Sci 82:855-61
Schumann, Michael; Nakagawa, Tomoo; Mantey, Samuel A et al. (2008) Function of non-visual arrestins in signaling and endocytosis of the gastrin-releasing peptide receptor (GRP receptor). Biochem Pharmacol 75:1170-85
Jensen, R T; Battey, J F; Spindel, E R et al. (2008) International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 60:1-42
Seidita, G; Mirisola, M; D'Anna, R P et al. (2008) Analysis of the gastrin-releasing peptide receptor gene in Italian patients with autism spectrum disorders. Am J Med Genet B Neuropsychiatr Genet 147B:807-13
Igarashi, Hisato; Ito, Tetsuhide; Kuwano-Kojima, Mizuho et al. (2008) Involvement of VPAC1 and VPAC2 receptors in increasing local pancreatic blood flow in anesthetized rats. Pancreas 37:236-8

Showing the most recent 10 out of 31 publications