This project is concerned with exploring theoretical factors involved in mutagenesis and the initial steps in carcinogenesis. Recent experimental advances in the area of genetic engineering have provided new possibilities for studying the dependence of chemically induced mutational events on DNA sequence. We are using computer modeling to examine the physical chemical factors (charge distribution, chemical reactivity, and stereochemical and thermodynamic relationships) contributing to site specificity of chemical agents at the level of DNA damage. We are employing ab initio quantum chemical techniques to obtain charge distributions and geometric parameters on small systems, molecular mechanics and dynamics on larger systems (10 to 20- mer oligonucleotides) and computer graphics for analysis of predicted structures. Computing equipment used includes: the dual DEC 8650's at NIEHS, an office microvax-II, a Silicon Graphics 2400 IRIS workstation and the National Cancer Institute CRAY-XMP at Frederick, MD. Future emphases will be to characterize local structures of DNA sequences (native and chemically modified) that contain known hot spots from mammalian oncogenes and model bacterial systems.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Intramural Research (Z01)
Project #
1Z01ES043010-03
Application #
3941525
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
1987
Total Cost
Indirect Cost
Name
U.S. National Inst of Environ Hlth Scis
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Min, Jungki; Perera, Lalith; Krahn, Juno M et al. (2018) Probing Dominant Negative Behavior of Glucocorticoid Receptor ? through a Hybrid Structural and Biochemical Approach. Mol Cell Biol :
Li, Yin; Perera, Lalith; Coons, Laurel A et al. (2018) Differential in Vitro Biological Action, Coregulator Interactions, and Molecular Dynamic Analysis of Bisphenol A (BPA), BPAF, and BPS Ligand-ER? Complexes. Environ Health Perspect 126:017012
Perera, Lalith; Li, Yin; Coons, Laurel A et al. (2017) Binding of bisphenol A, bisphenol AF, and bisphenol S on the androgen receptor: Coregulator recruitment and stimulation of potential interaction sites. Toxicol In Vitro 44:287-302
Perera, Lalith; Beard, William A; Pedersen, Lee G et al. (2017) Hiding in Plain Sight: The Bimetallic Magnesium Covalent Bond in Enzyme Active Sites. Inorg Chem 56:313-320
Perera, Lalith; Freudenthal, Bret D; Beard, William A et al. (2017) Revealing the role of the product metal in DNA polymerase ? catalysis. Nucleic Acids Res 45:2736-2745
Almaliti, Jehad; Al-Hamashi, Ayad A; Negmeldin, Ahmed T et al. (2016) Largazole Analogues Embodying Radical Changes in the Depsipeptide Ring: Development of a More Selective and Highly Potent Analogue. J Med Chem 59:10642-10660
Takaku, Motoki; Grimm, Sara A; Shimbo, Takashi et al. (2016) GATA3-dependent cellular reprogramming requires activation-domain dependent recruitment of a chromatin remodeler. Genome Biol 17:36
Perera, Lalith; Freudenthal, Bret D; Beard, William A et al. (2015) Requirement for transient metal ions revealed through computational analysis for DNA polymerase going in reverse. Proc Natl Acad Sci U S A 112:E5228-36
Perera, Lalith; Beard, William A; Pedersen, Lee G et al. (2014) Applications of quantum mechanical/molecular mechanical methods to the chemical insertion step of DNA and RNA polymerization. Adv Protein Chem Struct Biol 97:83-113
Perdivara, Irina; Perera, Lalith; Sricholpech, Marnisa et al. (2013) Unusual fragmentation pathways in collagen glycopeptides. J Am Soc Mass Spectrom 24:1072-81

Showing the most recent 10 out of 52 publications