NMR methods provide a unique approach for the investigation of metabolic and physiological processes in intact systems, perfused organs, cell suspensions, as well as by examination of cell extracts. This project investigates how chemical toxins or physical factors alter metabolic processes. A recent objective of this project has been the development of a better understanding of the molecular basis for the physiological and toxicological properties of boron. As shown in earlier studies, serine proteases and mechanistically related enzymes such as gamma-glutamyl transpeptidase interact with borate and alcohols to form ternary complexes that inhibit my mimicry of the transition state. We had previously obtained data indicating that in addition to the active site complex, borate was apparently binding to an additional site on the surface of the trypsin molecule. During the past year, we determined the structure of a covalent complex of borate with the enzyme trypsin, that involves formation of a bidentate covalent complex with surface residues Ser164 and Ser167. Analysis of this interaction leads to predictions of structural characteristics of other proteins that would be consistent with formation of similar borate complexes. In addition to providing insight into the physiological effects of borate, such interactions can in principle form the basis for the development of boronate ligands. ? ? A second area of effort has involved the development of improved methods for the measurement of intracellular cations. Since the introduction of 5FBAPTA as an NMR indicator for intracellular calcium, a goal of this research has been the development of a trifluoromethyl analog, which can provide greater sensitivity. During the past year, we synthesized a trifluoromethylated calcium chelator for the measurement of organelle calcium, and are currently evaluating its utility.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Intramural Research (Z01)
Project #
1Z01ES050110-18
Application #
7327814
Study Section
(LSB)
Project Start
Project End
Budget Start
Budget End
Support Year
18
Fiscal Year
2006
Total Cost
Indirect Cost
Name
U.S. National Inst of Environ Hlth Scis
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Bonini, Marcelo G; Gabel, Scott A; Ranguelova, Kalina et al. (2009) Direct magnetic resonance evidence for peroxymonocarbonate involvement in the cu,zn-superoxide dismutase peroxidase catalytic cycle. J Biol Chem 284:14618-27
Gabel, Scott A; London, Robert E (2008) Ternary borate-nucleoside complex stabilization by ribonuclease A demonstrates phosphate mimicry. J Biol Inorg Chem 13:207-17
Yoshioka, Jun; Imahashi, Kenichi; Gabel, Scott A et al. (2007) Targeted deletion of thioredoxin-interacting protein regulates cardiac dysfunction in response to pressure overload. Circ Res 101:1328-38
Transue, Thomas R; Gabel, Scott A; London, Robert E (2006) NMR and crystallographic characterization of adventitious borate binding by trypsin. Bioconjug Chem 17:300-8
Gabel, Scott A; Walker, Vickie R; London, Robert E et al. (2005) Estrogen receptor beta mediates gender differences in ischemia/reperfusion injury. J Mol Cell Cardiol 38:289-97
Imahashi, Kenichi; London, Robert E; Steenbergen, Charles et al. (2004) Male/female differences in intracellular Na+ regulation during ischemia/reperfusion in mouse heart. J Mol Cell Cardiol 37:747-53
Transue, Thomas R; Krahn, Joseph M; Gabel, Scott A et al. (2004) X-ray and NMR characterization of covalent complexes of trypsin, borate, and alcohols. Biochemistry 43:2829-39
Gao, Guanghua; Prutzman, Kirk C; King, Michelle L et al. (2004) NMR solution structure of the focal adhesion targeting domain of focal adhesion kinase in complex with a paxillin LD peptide: evidence for a two-site binding model. J Biol Chem 279:8441-51
Chen, Jarvis; Petranka, John; Yamamura, Ken et al. (2003) Gender differences in sarcoplasmic reticulum calcium loading after isoproterenol. Am J Physiol Heart Circ Physiol 285:H2657-62
London, Robert E; Gabel, Scott A (2002) Formation of a trypsin-borate-4-aminobutanol ternary complex. Biochemistry 41:5963-7

Showing the most recent 10 out of 15 publications