Neurotransmitter receptors provide access to neuronal circuits for investigation of their biology, and potentially for therapeutic intervention. Peptide effects on G-protein coupled receptors are often relatively long lasting and may have a modulatory role. These subtle effects may be relevant to the basis or treatment of mental illness. We are studying a family of G-protein coupled receptors (referred to as the secretin-VIP family, family B, or type II) that is structurally distinct from the majority of G-protein coupled receptors (rhodopsin- or beta-adrenergic-like receptors). Recently we have focussed on the parathyroid hormone 2 (PTH2) receptor, which we identified in a screen for novel central nervous system expressed polypeptide receptors. Our initial studies of the human PTH2 receptor showed that it was activated by parathyroid hormone (PTH). Mapping the PTH2 receptor?s cellular distribution revealed expression within brain areas not normally exposed to circulating peptides, such as PTH. Further, we found that PTH poorly activated the rat PTH2 receptor. Using selective activation of the PTH2 receptor as an assay we purified a previously unknown 39 amino acid peptide from bovine hypothalamus. This peptide, which we named tuberoinfundibular peptide of 39 residues (TIP39), activates PTH2 receptors from human, rat and zebrafish and does not activate PTH1 receptors. Both rat and zebrafish PTH2 receptors are much more effectively activated by TIP39 than PTH, supporting the suggestion that a TIP39 homologue is their natural ligand. We are currently testing hypotheses for the biological role of TIP39 and the PTH2 receptor derived from recent detailed mapping of the PTH2 receptor?s distribution. We have determined the sequence of rodent and human TIP39 and are currently mapping the peptide?s distribution. We are attempting to develop mice with PTH2 receptor and TIP39 null phenotypes to aid in elucidating the function of this peptide-receptor system.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Intramural Research (Z01)
Project #
1Z01MH002685-08
Application #
6534847
Study Section
National Institute of Mental Health Initial Review Group (NIMH)
Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
2001
Total Cost
Indirect Cost
Name
U.S. National Institute of Mental Health
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Brenner, David; Bago, Attila G; Gallatz, Katalin et al. (2008) Tuberoinfundibular peptide of 39 residues in the embryonic and early postnatal rat brain. J Chem Neuroanat 36:59-68
Bago, Attila G; Palkovits, Miklos; Usdin, Ted B et al. (2008) Evidence for the expression of parathyroid hormone 2 receptor in the human brainstem. Ideggyogy Sz 61:123-6
Usdin, Ted B; Paciga, Mark; Riordan, Tim et al. (2008) Tuberoinfundibular Peptide of 39 residues is required for germ cell development. Endocrinology 149:4292-300
Fegley, D B; Holmes, A; Riordan, T et al. (2008) Increased fear- and stress-related anxiety-like behavior in mice lacking tuberoinfundibular peptide of 39 residues. Genes Brain Behav 7:933-42
Faber, Catherine A; Dobolyi, Arpad; Sleeman, Mark et al. (2007) Distribution of tuberoinfundibular peptide of 39 residues and its receptor, parathyroid hormone 2 receptor, in the mouse brain. J Comp Neurol 502:563-83
Kuo, Jonathan; Usdin, Ted B (2007) Development of a rat parathyroid hormone 2 receptor antagonist. Peptides 28:887-92
Dobolyi, Arpad; Irwin, Sarah; Wang, Jing et al. (2006) The distribution and neurochemistry of the parathyroid hormone 2 receptor in the rat hypothalamus. Neurochem Res 31:227-36
Wang, J; Palkovits, M; Usdin, T B et al. (2006) Forebrain projections of tuberoinfundibular peptide of 39 residues (TIP39)-containing subparafascicular neurons. Neuroscience 138:1245-63
Dobolyi, Arpad; Wang, Jing; Irwin, Sarah et al. (2006) Postnatal development and gender-dependent expression of TIP39 in the rat brain. J Comp Neurol 498:375-89
Wang, J; Palkovits, M; Usdin, T B et al. (2006) Afferent connections of the subparafascicular area in rat. Neuroscience 138:197-220

Showing the most recent 10 out of 44 publications