Voltage-activated ion channels are expressed in many cells types and are important for an array of physiological processes, including the generation and processing of electrical signals in the nervous system, regulation of heart contraction and secretion of hormones. The role of these channels in electrical signaling is particularly important because they open and close in response to changes in membrane voltage. For example, action potentials result from the orchestrated action of voltage-gated sodium and potassium channels, and voltage-gated calcium channels convert electrical to chemical signals in the process of excitation-secretion coupling. The three main classes of voltage-gated ion channels belong to a common family of membrane proteins constructed from two types of domains: a central pore domain where the conduction pathways for potassium, sodium or calcium ions reside, and four surrounding voltage-sensing domains. A major focus of the lab is to explore the structure of the voltage-sensing domains in voltage-gated potassium (Kv) channels and to define how and where the voltage-sensors interact with the gate region of the pore domain. A complementary aim is to study protein toxins that interact with voltage-gated ion channels. Our work with a class of toxins that we refer to as gating modifier toxins has begun to reveal new mechanisms by which channel-interacting proteins modify activity and to shed light on several fundamental questions concerning the process of voltage-sensing. Since many drugs affecting the nervous system derive their efficacy by modulating the gating of voltage-gated channels, we continue to search for new molecules that interact with these channels and to study the molecular basis for their actions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Intramural Research (Z01)
Project #
1Z01NS002945-10
Application #
7324438
Study Section
(NIND)
Project Start
Project End
Budget Start
Budget End
Support Year
10
Fiscal Year
2006
Total Cost
Indirect Cost
City
State
Country
United States
Zip Code
Zhang, Feng; Hanson, Sonya M; Jara-Oseguera, Andres et al. (2016) Engineering vanilloid-sensitivity into the rat TRPV2 channel. Elife 5:
Lee, Seungkyu; Milescu, Mirela; Jung, Hyun Ho et al. (2010) Solution structure of GxTX-1E, a high-affinity tarantula toxin interacting with voltage sensors in Kv2.1 potassium channels . Biochemistry 49:5134-42
Soler-Llavina, Gilberto J; Chang, Tsg-Hui; Swartz, Kenton J (2006) Functional interactions at the interface between voltage-sensing and pore domains in the Shaker K(v) channel. Neuron 52:623-34
Swartz, Kenton J (2006) Greasing the gears of potassium channels. Nat Chem Biol 2:401-2
Silberberg, Shai D; Chang, Tsg-Hui; Swartz, Kenton J (2005) Secondary structure and gating rearrangements of transmembrane segments in rat P2X4 receptor channels. J Gen Physiol 125:347-59
Kitaguchi, Tetsuya; Swartz, Kenton J (2005) An inhibitor of TRPV1 channels isolated from funnel Web spider venom. Biochemistry 44:15544-9
Swartz, Kenton J (2005) Structure and anticipatory movements of the S6 gate in Kv channels. J Gen Physiol 126:413-7
Phillips, L Revell; Milescu, Mirela; Li-Smerin, Yingying et al. (2005) Voltage-sensor activation with a tarantula toxin as cargo. Nature 436:857-60
Jung, Hoi Jong; Lee, Ju Yeon; Kim, Su Hwan et al. (2005) Solution structure and lipid membrane partitioning of VSTx1, an inhibitor of the KvAP potassium channel. Biochemistry 44:6015-23
Swartz, Kenton J (2004) Opening the gate in potassium channels. Nat Struct Mol Biol 11:499-501

Showing the most recent 10 out of 25 publications