The post synaptic density (PSD) at excitatory glutamatergic synapses is a complex molecular machine which appears to be a key site of information storage. New methods to probe its structure show that a lattice-like backbone labeling for PSD-95 forms its core, while other structural components-synGAP, SHANK, and the kinase CaMKII-occupy various locations in the lattice. The PSDs in intact neurons, however, change size rapidly during activity and these changes are rapidly reversible. Immunolabeling shows that CaMKII is a major component of the added mass. Measurements of the mass of PSDs from ischemic brains shows an increase in mass sufficient to allow for the addition of up to 400 CaMKII holoenzymes. Furthermore, CaMKII at the PSD is in the phosphorylated form, and reversibility is inhibited by specific phosphatases, suggesting that addition of CaMKII depends on phosphorylation. A method has been developed to affinity purify PSDs from other components of the PSD fraction, which will allow independent measurement of CaMKII content. After high pressure freezing of cultures at rest and after NMDA stimulation they can be freeze-substituted and examined by post embedding immunogold and tomography of thin sections. Imunnogold labeling shows the distribution PSD molecules while tomography resolves PSD structure down to molecular dimensions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Intramural Research (Z01)
Project #
1Z01NS002972-05
Application #
6671398
Study Section
(LN)
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
2002
Total Cost
Indirect Cost
City
State
Country
United States
Zip Code
Mullasseril, Praseeda; Dosemeci, Ayse; Lisman, John E et al. (2007) A structural mechanism for maintaining the 'on-state'of the CaMKII memory switch in the post-synaptic density. J Neurochem 103:357-64
Tao-Cheng, J-H (2007) Ultrastructural localization of active zone and synaptic vesicle proteins in a preassembled multi-vesicle transport aggregate. Neuroscience 150:575-84
Tao-Cheng, Jung-Hwa; Gallant, Paul E; Brightman, Milton W et al. (2007) Structural changes at synapses after delayed perfusion fixation in different regions of the mouse brain. J Comp Neurol 501:731-40
Dosemeci, Ayse; Makusky, Anthony J; Jankowska-Stephens, Ewa et al. (2007) Composition of the synaptic PSD-95 complex. Mol Cell Proteomics 6:1749-60
Tavakoli-Nezhad, Mahboubeh; Tao-Cheng, Jung-Hwa; Weaver, David R et al. (2007) PER1-like immunoreactivity in oxytocin cells of the hamster hypothalamo-neurohypophyseal system. J Biol Rhythms 22:81-4
Chen, Xiaobing; Vinade, Lucia; Leapman, Richard D et al. (2005) Mass of the postsynaptic density and enumeration of three key molecules. Proc Natl Acad Sci U S A 102:11551-6
Tao-Cheng, J-H; Vinade, L; Winters, C A et al. (2005) Inhibition of phosphatase activity facilitates the formation and maintenance of NMDA-induced calcium/calmodulin-dependent protein kinase II clusters in hippocampal neurons. Neuroscience 130:651-6
DeGiorgis, Joseph A; Jaffe, Howard; Moreira, Jorge E et al. (2005) Phosphoproteomic analysis of synaptosomes from human cerebral cortex. J Proteome Res 4:306-15
Otmakhov, Nikolai; Tao-Cheng, Jung-Hwa; Carpenter, Stephen et al. (2004) Persistent accumulation of calcium/calmodulin-dependent protein kinase II in dendritic spines after induction of NMDA receptor-dependent chemical long-term potentiation. J Neurosci 24:9324-31
Jaffe, H; Vinade, L; Dosemeci, A (2004) Identification of novel phosphorylation sites on postsynaptic density proteins. Biochem Biophys Res Commun 321:210-8

Showing the most recent 10 out of 16 publications