The specification of skeletal muscle cells, starting from totipotent stem cells, lies at the core of skeletal myogenesis. During this process, the genome of the progenitor muscle cells is modified to ensure that stable - if not irreversible - distinctions are made between genes not to be expressed and genes whose expression is or will be required. MyoD is a transcriptional activator required for muscle-specific gene expression. Expression of exogenous MyoD in numerous terminally differentiated cell lineages (neurons, adipocytes, skin cells, chondrocytes and others) redirects their fates towards the skeletal muscle phenotype. Furthermore, MyoD - and the related Myf-5 protein - is essential for the formation of skeletal muscles in the animal. In order to regulate transcription, MyoD recruits chromatin and histone modifying enzymes. Specification and maintenance of committed, yet undifferentiated, muscle precursors are the result of a fine balance between gene activation and repression. Genes to be expressed in terminally differentiated cells are actively repressed in muscle precursors. Ezh2, the subunit conferring methyltransferase activity to the Polycomb Repressive Complex 2 (PRC2), occupies and methylates histones located at regulatory regions of muscle-specific genes not expressed in muscle precursors. Once differentation ensues, Ezh2 binding is lost and histone methylation is erased, resulting in transcriptional activation. In addition to methylation-demethylation, other histone modifications are associated with muscle gene expression. Acetylation and deacetylation are in a dynamic equilibrium, and our studies have identified a role for several histone deacetylases (HDACs) in controlling muscle differentiation. We have used small molecules to modulate the enzymatic activity of several HDACs in skeletal muscle cells. Pharmacological modulation of the HDACs was found to ameliorate the morphology and function of mouse dystrophic muscles. With the aim of contributing to a better understanding of the mechanisms that regulate gene expression in physiological and pathological conditions, we will continue to identify and functionally characterize molecules that cause histone and chromatin modifications and regulate proliferation, differentiation, and regeneration of skeletal muscle cells.

Project Start
Project End
Budget Start
Budget End
Support Year
17
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Arthritis, Musculoskeletal, Skin Dis
Department
Type
DUNS #
City
State
Country
Zip Code
Feng, Xuesong; Naz, Faiza; Juan, Aster H et al. (2018) Identification of Skeletal Muscle Satellite Cells by Immunofluorescence with Pax7 and Laminin Antibodies. J Vis Exp :
Tsai, Pei-Fang; Dell'Orso, Stefania; Rodriguez, Joseph et al. (2018) A Muscle-Specific Enhancer RNA Mediates Cohesin Recruitment and Regulates Transcription In trans. Mol Cell 71:129-141.e8
Sartorelli, Vittorio; Puri, Pier Lorenzo (2018) Shaping Gene Expression by Landscaping Chromatin Architecture: Lessons from a Master. Mol Cell 71:375-388
Juan, Aster H; Wang, Stan; Ko, Kyung Dae et al. (2017) Roles of H3K27me2 and H3K27me3 Examined during Fate Specification of Embryonic Stem Cells. Cell Rep 18:297
Jullien, Jerome; Vodnala, Munender; Pasque, Vincent et al. (2017) Gene Resistance to Transcriptional Reprogramming following Nuclear Transfer Is Directly Mediated by Multiple Chromatin-Repressive Pathways. Mol Cell 65:873-884.e8
Juan, Aster H; Sartorelli, Vittorio (2016) S6K1ing to ResTOR Adipogenesis with Polycomb. Mol Cell 62:325-6
Perovanovic, Jelena; Dell'Orso, Stefania; Gnochi, Viola F et al. (2016) Laminopathies disrupt epigenomic developmental programs and cell fate. Sci Transl Med 8:335ra58
Dell'Orso, Stefania; Wang, A Hongjun; Shih, Han-Yu et al. (2016) The Histone Variant MacroH2A1.2 Is Necessary for the Activation of Muscle Enhancers and Recruitment of the Transcription Factor Pbx1. Cell Rep 14:1156-1168
Feng, Xuesong; Juan, Aster H; Wang, Hongjun A et al. (2016) Polycomb Ezh2 controls the fate of GABAergic neurons in the embryonic cerebellum. Development 143:1971-80
Davey, Jonathan R; Watt, Kevin I; Parker, Benjamin L et al. (2016) Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass. JCI Insight 1:

Showing the most recent 10 out of 32 publications