Despite the dual role for TGF-beta as both tumor suppressor and tumor promoter in carcinogenesis, preclinical data from our lab and others has previously suggested that strategies to antagonize TGF-beta may selectively reduce the undesirable tumor promoting effects of this growth factor while sparing the desirable effects on tumor suppression and normal homeostasis. Based on these promising preclinical results, several different TGF-beta pathway antagonists are in early phase clinical trials for the treatment of advanced cancer. However, given the complex biology of TGF-beta, the successful development of TGF-beta antagonists for cancer therapy will depend on a clear understanding of how these agents work, and the related question of how to select patients who will benefit from this type of treatment. Our major focus in FY12 has been to work with a panel of transplantable syngeneic mouse models of metastatic breast cancer to develop predictive biomarkers of response to anti-TGF-beta antibody therapy, and to explore combination therapy with conventional chemotherapeutics. Metastatic burden is our primary endpoint. Using this panel, we have found that while TGF-beta antagonism inhibits metastasis in some models, it has no effect on or can even stimulate metastasis in other models. We have excluded a number of plausible candidate predictive biomarkers of response to TGF-beta antagonism and work with discovery-based approaches is ongoing, including testing gene signatures of TGF-beta-mediated tumor suppression that we identified in the related project ZIA BC 005785. We are investigating the mechanisms that underlie the undesirable effects of TGF-beta antagonism that are seen in some models. We are also attempting to enhance therapeutic efficacy of TGF-beta antibodies by combination therapy with immunomodulatory chemotherapeutics.
Showing the most recent 10 out of 12 publications