Heat shock protein 90 (Hsp90) is a molecular chaperone required for the stability and function of many signaling proteins that are often activated, mutated or over-expressed in cancer cells and that underly cancer cell proliferation and survival. Hsp90 is a conformationally flexible protein that associates with a distinct set of co-chaperones depending on ATP or ADP occupancy of an amino-terminal binding pocket. Nucleotide exchange and ATP hydrolysis by Hsp90 itself, with the assistance of co-chaperones, drive the Hsp90 chaperone machine to bind, chaperone, and release client proteins. Cycling of the Hsp90 chaperone machine is critical to its function. Although ATP binding and hydrolysis have been convincingly implicated in regulating the Hsp90 cycle, growing evidence suggests that various post-translational modifications of Hsp90, including phosphorylation, acetylation, sumoylation and other modifications, provide an additional overlapping or parallel level of regulation. A more complete understanding of how these various protein modifications are regulated and interact with each other at the cellular level to modulate Hsp90 chaperone activity is critical to the design of novel approaches to inhibit this medically important molecular target. Coordination of signaling pathways that mediate distinct post-translational modifications of Hsp90 is highly likely. Understanding the cross-talk between various modifications will no doubt be a difficult undertaking, but such knowledge will add greatly to our appreciation of how Hsp90 function is regulated in the complex milieu of the cell. Such information may provide a unique approach to specific interdiction of Hsp90 function in cancer cells and will thus be an important consideration in designing clinical trials of Hsp90 inhibitors in combination with other molecularly targeted drugs. A more thorough understanding of the role that post-translational modifications play in modulating Hsp90 function will certainly improve the effectiveness of such combination therapies. In Fy14, we found that two chemically unrelated Hsp90 inhibitors, the benzoquinone ansamycin geldanamycin and the purine analog PU-H71, select for overlapping but not identical subpopulations of total cellular Hsp90, even though both inhibitors bind to an amino terminal nucleotide pocket and prevent N domain dimerization. Our data also suggest that PU-H71 is able to access a broader range of N domain undimerized Hsp90 conformations than is geldanamycin and is less affected by Hsp90 phosphorylation, consistent with its broader and more potent anti-tumor activity. A more complete understanding of the impact of the cellular milieu on small molecule inhibitor binding to Hsp90 should facilitate their more effective use in the clinic. Further, we found that asymmetric Hsp90 N domain sUMOylation recruits the co-chaperone Aha1 and ATP-competitive inhibitors. Hsp90-mediated ATP hydrolysis requires a series of conformational changes that are regulated by cochaperones and numerous posttranslational modifications (PTMs). SUMOylation is one of the least-understood Hsp90 PTMs.We found that asymmetric SUMOylation of a conserved lysine residue in the N domain of both yeast (K178) and human (K191) Hsp90 facilitates both recruitment of the ATPase-activating cochaperone Aha1 and, unexpectedly, also favors the binding of Hsp90 inhibitors, suggesting that these drugs associate preferentially with Hsp90 proteins that are actively engaged in the chaperone cycle. Importantly, cellular transformation is accompanied by elevated steady-state N domain SUMOylation, and increased Hsp90 SUMOylation sensitizes yeast and mammalian cells to Hsp90 inhibitors, providing a mechanism to explain the sensitivity of cancer cells to these drugs.
Showing the most recent 10 out of 69 publications