Pretreatment with methamphetamine (METH) can attenuate toxicity due to acute METH challenges. The majority of previous reports have focused mainly on the effects of the drug on the striatal dopaminergic system. In the present study, we used a regimen that involves gradual increases in METH administration to rats in order to mimic progressively larger doses of the drug used by some human METH addicts. We found that this METH preconditioning was associated with complete protection against dopamine depletion caused by a METH challenge (5 mg/kg x 6 injections given 1 h apart) in the striatum and cortex. In contrast, there was no preconditioning-mediated protection against METH-induced serotonin depletion in the striatum and hippocampus, with some protection being observed in the cortex. There was also no protection against METH-induced norepinephrine (NE) depletion in the hippocampus. These results indicate that, in contrast to the present dogmas, there might be differences in the mechanisms involved in METH toxicity on monoaminergic systems in the rodent brain. Thus, chronic injections of METH might activate programs that protect against dopamine toxicity without influencing drug-induced pathological changes in serotoninergic systems. Further studies will need to evaluate the cellular and molecular bases for these differential responses.
Showing the most recent 10 out of 49 publications