Seven transmembrane-spanning receptors (7TMRs or G protein-coupled receptors, GPCRs) represent the largest family of signal-transducing molecules known. 7TMRs convey signals for light and many extracellular regulatory molecules, such as, hormones, growth factors and neurotransmitters, that regulate every cell in the body. Dysregulation of 7TMRs has been found in a growing number of human diseases and 7TMRs have been estimated to be the targets of more than 30% of the drugs used in clinical medicine today. Thus, understanding how 7TMRs function is an important goal of biological research. We have used receptors for thyrotropin-releasing hormone (TRH) (TRH-Rs), for thyroid-stimulating hormone (TSH-R) and for free fatty acids (GPR40/FFAR1) as model 7TMRs to study their structure and function. During this year, we have studied several new aspects of the structure and function of these receptors. 1) We discovered/developed a small molecule antagonist for the human TSH-R that inhibits activation by TSH and also by thyroid-stimulating antibodies from patients with Graves hyperthyroidism. This represents a proof-of-principle that small molecule antagonists of TSH-R could be used as drugs to treat hyperthyroid patients. 2) We generated a mouse that did not express TRH-R2 and found that these mice exhibit increased depression and reduced anxiety phenotypes. These findings point to an important role of TRH-R in neuropsychiatric disorders. 3) Using homology models, we predicted residues within FFAR1 that are important for agonist recognition and receptor activation, and then showed that these predictions were correct using site-specific mutagenesis. These findings point to a new mechanism by which receptors of Class A 7TMRs may be activated. 4) We used our homology model of FFAR1 to perform virtual screening of potential low molecular weight ligands for FFAR1 and discovered novel agonists and antagonists. Based on our research into FFAR1, we were invited to contribute a review article on FFARs.

Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
2009
Total Cost
$877,117
Indirect Cost
City
State
Country
Zip Code
Morgan, Sarah J; Neumann, Susanne; Gershengorn, Marvin C (2018) Normal Human Thyrocytes in Culture. Methods Mol Biol 1817:1-7
Marcus-Samuels, Bernice; Krieger, Christine C; Boutin, Alisa et al. (2018) Evidence That Graves' Ophthalmopathy Immunoglobulins Do Not Directly Activate IGF-1 Receptors. Thyroid 28:650-655
Katz, Liora S; Xu, Shiliyang; Ge, Kai et al. (2018) T3 and Glucose Coordinately Stimulate ChREBP-Mediated Ucp1 Expression in Brown Adipocytes From Male Mice. Endocrinology 159:557-569
Citterio, Cintia E; Veluswamy, Balaji; Morgan, Sarah J et al. (2017) De novo triiodothyronine formation from thyrocytes activated by thyroid-stimulating hormone. J Biol Chem 292:15434-15444
Krieger, Christine C; Perry, Joseph D; Morgan, Sarah J et al. (2017) TSH/IGF-1 Receptor Cross-Talk Rapidly Activates Extracellular Signal-Regulated Kinases in Multiple Cell Types. Endocrinology 158:3676-3683
Place, Robert F; Krieger, Christine C; Neumann, Susanne et al. (2017) Inhibiting thyrotropin/insulin-like growth factor 1 receptor crosstalk to treat Graves' ophthalmopathy: studies in orbital fibroblasts in vitro. Br J Pharmacol 174:328-340
Dougherty, John P; Wolff, Brian S; Cullen, Mary J et al. (2017) Taltirelin alleviates fatigue-like behavior in mouse models of cancer-related fatigue. Pharmacol Res 124:1-8
Neumann, Susanne; Gershengorn, Marvin C (2017) Rebuttal to Smith and Janssen (Thyroid 2017;27:746-747. DOI: 10.1089/thy.2017.0281). Thyroid 27:1459-1460
Morgan, Sarah J; Neumann, Susanne; Marcus-Samuels, Bernice et al. (2016) Thyrotropin Stimulates Differentiation Not Proliferation of Normal Human Thyrocytes in Culture. Front Endocrinol (Lausanne) 7:168
Krieger, Christine C; Place, Robert F; Bevilacqua, Carmine et al. (2016) TSH/IGF-1 Receptor Cross Talk in Graves' Ophthalmopathy Pathogenesis. J Clin Endocrinol Metab 101:2340-7

Showing the most recent 10 out of 28 publications