We are using a yeast system we constructed earlier that allows us to evaluate function of any Hsp70 isoform in yeast. We are using this system to investigate Hsp70 homologs within and across species with regard to cell growth and propagation of different prions. This very sensitive system gives us the unique ability to distinguish exquisite functional differences among nearly identical Hsp70 isoforms and provides a means to approach the problem of uncovering the underlying mechanisms. The constitutively expressed S. cerevisiae Hsp70 isoforms Ssa1 and Ssa2 are 98% identical and their stress-inducible counterparts Ssa3 and Ssa4 share 88% identity and are 80% identical to Ssa1/2. Using our system we have identified structural differences between Ssa1 and Ssa2 that underlie the differences in the way these isoforms function in both prion propagation and protein degradation. Our findings provide insight into how nearly identical Hsp70 isoforms can have distinct activities with regard to their roles in important cellular processes, and in the replication and growth processes necessary for propagation of yeast prions. Our work also reveals how functionally redundant proteins can still perform specialized tasks in the cell. Current work focuses on understanding how the structural differences influence enzymatic activities at a molecular level, which could lead to design of strategies targeting Hsp70 function in vivo in ways that would hinder amyloid accumulation. We are also using our system to investigate to what degree the structural differences contribute to differences in intrinsic Hsp70 activities or interactions with co-chaperones that regulate Hsp70.

Project Start
Project End
Budget Start
Budget End
Support Year
13
Fiscal Year
2010
Total Cost
$402,483
Indirect Cost
City
State
Country
Zip Code
Reidy, Michael; Kumar, Shailesh; Anderson, D Eric et al. (2018) Dual Roles for Yeast Sti1/Hop in Regulating the Hsp90 Chaperone Cycle. Genetics 209:1139-1154
Xue, You-Lin; Wang, Hao; Riedy, Michael et al. (2018) Molecular dynamics simulations of Hsp40 J-domain mutants identifies disruption of the critical HPD-motif as the key factor for impaired curing in vivo of the yeast prion [URE3]. J Biomol Struct Dyn 36:1764-1775
Kravats, Andrea N; Hoskins, Joel R; Reidy, Michael et al. (2018) Functional and physical interaction between yeast Hsp90 and Hsp70. Proc Natl Acad Sci U S A 115:E2210-E2219
Zuehlke, Abbey D; Reidy, Michael; Lin, Coney et al. (2017) An Hsp90 co-chaperone protein in yeast is functionally replaced by site-specific posttranslational modification in humans. Nat Commun 8:15328
Masison, Daniel C; Reidy, Michael (2015) Yeast prions are useful for studying protein chaperones and protein quality control. Prion 9:174-83
Reidy, Michael; Masison, Daniel C (2014) Yeast prions help identify and define chaperone interaction networks. Curr Pharm Biotechnol 15:1008-18
Reidy, Michael; Sharma, Ruchika; Masison, Daniel C (2013) Schizosaccharomyces pombe disaggregation machinery chaperones support Saccharomyces cerevisiae growth and prion propagation. Eukaryot Cell 12:739-45
Sharma, Deepak; Masison, Daniel C (2011) Single methyl group determines prion propagation and protein degradation activities of yeast heat shock protein (Hsp)-70 chaperones Ssa1p and Ssa2p. Proc Natl Acad Sci U S A 108:13665-70
Sharma, Deepak; Martineau, Celine N; Le Dall, Marie-Therese et al. (2009) Function of SSA subfamily of Hsp70 within and across species varies widely in complementing Saccharomyces cerevisiae cell growth and prion propagation. PLoS One 4:e6644
Sharma, Deepak; Masison, Daniel C (2009) Hsp70 structure, function, regulation and influence on yeast prions. Protein Pept Lett 16:571-81

Showing the most recent 10 out of 11 publications