Chromatin structure and architecture. DNA within the cell nucleus is packaged into chromatin and a variety of models currently describe the structure of the condensed 30 nm chromatin fiber observed in vitro. However, evidence for this structure in vivo is lacking, except in specialized cells such as mature avian erythrocytes in which all of the chromatin is essentially inactive. We are interested in understanding the organization of DNA within condensed chromatin in vivo, as well as the topological constraints imposed on its higher order by organizing proteins such as CTCF and cohesin. We are developing high resolution chromosome capture conformation assays utilizing native chromatin fragments, such as the previously studied condensed heterochromatin flanked by the developmentally regulated folate receptor and beta-globin genes. These studies will allow us to better understand the structure of the chromatin fiber in vivo, thus providing insight in the relations between chromatin structure and essential processes such as gene expression and DNA replication. Macromolecular assemblies of biological interest. Biological assemblies have been characterized in terms of their shape, stoichiometry and affinity of interaction using hydrodynamic methods. These studies complement current investigations, as evidenced by recent work by Schmidt et al. (2016). In this work, a simple method using electron paramagnetic resonance (EPR) is developed to determine the populations of protein oligomers in solution. Such studies on the p66 subunit of HIV-1 reverse transcriptase demonstrate that the presence of glycerol results in a shift of the monomer-dimer equilibrium. We utilized analytical ultracentrifugation to characterize the p66 monomer-dimer equilibrium and confirm the surprising EPR observations, demonstrating the effects of glycerol. Analytical ultracentrifugation is one of the primary tools used for the hydrodynamic studies described. In collaboration with colleagues from the NIH, and others, we have published a textbook describing current methodology in the field (Schuck et al., 2016).

Project Start
Project End
Budget Start
Budget End
Support Year
12
Fiscal Year
2016
Total Cost
Indirect Cost
Name
U.S. National Inst Diabetes/Digst/Kidney
Department
Type
DUNS #
City
State
Country
Zip Code
Chiliveri, Sai Chaitanya; Louis, John M; Ghirlando, Rodolfo et al. (2018) Tilted, Uninterrupted, Monomeric HIV-1 gp41 Transmembrane Helix from Residual Dipolar Couplings. J Am Chem Soc 140:34-37
Zhou, Bing-Rui; Jiang, Jiansheng; Ghirlando, Rodolfo et al. (2018) Revisit of Reconstituted 30-nm Nucleosome Arrays Reveals an Ensemble of Dynamic Structures. J Mol Biol 430:3093-3110
Nguyen, Trang T; Ghirlando, Rodolfo; Venditti, Vincenzo (2018) The oligomerization state of bacterial enzyme I (EI) determines EI's allosteric stimulation or competitive inhibition by ?-ketoglutarate. J Biol Chem 293:2631-2639
Chittori, Sagar; Hong, Jingjun; Saunders, Hayden et al. (2018) Structural mechanisms of centromeric nucleosome recognition by the kinetochore protein CENP-N. Science 359:339-343
Lusvarghi, Sabrina; Ghirlando, Rodolfo; Davison, Jack R et al. (2018) Chemical and Biophysical Approaches for Complete Characterization of Lectin-Carbohydrate Interactions. Methods Enzymol 598:3-35
Passos, Dario Oliveira; Li, Min; Yang, Renbin et al. (2017) Cryo-EM structures and atomic model of the HIV-1 strand transfer complex intasome. Science 355:89-92
Jha, Jyoti K; Li, Mi; Ghirlando, Rodolfo et al. (2017) The DnaK Chaperone Uses Different Mechanisms To Promote and Inhibit Replication of Vibrio cholerae Chromosome 2. MBio 8:
Libich, David S; Tugarinov, Vitali; Ghirlando, Rodolfo et al. (2017) Confinement and Stabilization of Fyn SH3 Folding Intermediate Mimetics within the Cavity of the Chaperonin GroEL Demonstrated by Relaxation-Based NMR. Biochemistry 56:903-906
Kang, Hyeog; Oka, Shinichi; Lee, Duck-Yeon et al. (2017) Sirt1 carboxyl-domain is an ATP-repressible domain that is transferrable to other proteins. Nat Commun 8:15560
Xiao, Hua; Wang, Feng; Wisniewski, Jan et al. (2017) Molecular basis of CENP-C association with the CENP-A nucleosome at yeast centromeres. Genes Dev 31:1958-1972

Showing the most recent 10 out of 77 publications