Understanding how an environmental stimulant affects cellular physiology to give rise to a specific phenotypic outcome is a fundamental step toward understanding development and pathogenesis. During development and in response to environmental insults, various signaling cascades culminate in the activation of key chromatin remodeling enzymes and transcription factors, which collectively modulate the chromatin architecture to establish and/or maintain gene expression programs controlling cell identity. Our laboratory uses integrative interdisciplinary approaches merging systems biology, functional genomics, and biochemistry to map, reconstruct, and characterize developmentally- and environmentally-responsive gene networks that control fundamental biological processes ranging from transcription and signal transduction to cellular response to changes in the environment. Specifically, we seek to understand how transcription regulators and epigenetic modifications regulate gene expression programs during cellular development and differentiation. To this end, we use embryonic stem cells (ESCs) as a model system. ESCs maintain a plastic yet stable program of self-renewal while allowing rapid induction of alternate gene expression programs to initiate differentiation. Despite the elucidation of many genes and pathways critical for the maintenance of the pluripotent state, the mechanisms that coordinate the activities of master regulators, key signaling pathways, and epigenetic features remain poorly understood, owing largely to incomplete characterization of the genetic network underlying ESCs. By integrating evidence from multiple omics datasets, we have identified several genes with previously unknown roles in ESC Biology. To understand the roles of these potential ESC regulators, we have been studying a select few to gain insights into their mechanistic roles in the maintenance of ESCs. Thus far, we have been successful in characterizing the roles of Nucleolin, and the NF-Y complex. We found that Nucleolin maintains ESC homeostasis by shielding against differentiation-inducing redox imbalance-induced oxidative stress, and the NF-Y complex facilitates chromatin accessibility for master ESC transcription factors. Collectively, these studies will provide a foundation for defining the mechanism and scope of novel ESC regulators within developmentally- and environmentally- responsive gene networks. As part of our ongoing efforts to better understand regulation of gene expression during early embryonic development, we have uncovered an unanticipated role for intragenic enhancers in attenuating their host gene expression. Using genetic deletions, we have demonstrated a physiological role for enhancer-mediated attenuation in cell-fate determination during early embryonic development. These findings illustrate, for the first time, that intragenic enhancers not only enhance transcription of one or more genes from a distance but also finetune transcription of their host gene through attenuation.

Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
2017
Total Cost
Indirect Cost
Name
U.S. National Inst of Environ Hlth Scis
Department
Type
DUNS #
City
State
Country
Zip Code
Cinghu, Senthilkumar; Yang, Pengyi; Kosak, Justin P et al. (2017) Intragenic Enhancers Attenuate Host Gene Expression. Mol Cell 68:104-117.e6
Zheng, Xiaofeng; Yang, Pengyi; Lackford, Brad et al. (2016) CNOT3-Dependent mRNA Deadenylation Safeguards the Pluripotent State. Stem Cell Reports 7:897-910
Minard, Annabel Y; Tan, Shi-Xiong; Yang, Pengyi et al. (2016) mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Rep 17:29-36
Yang, Pengyi; Patrick, Ellis; Humphrey, Sean J et al. (2016) KinasePA: Phosphoproteomics data annotation using hypothesis driven kinase perturbation analysis. Proteomics 16:1868-71
Yang, Pengyi; Humphrey, Sean J; James, David E et al. (2016) Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data. Bioinformatics 32:252-9
Pathania, Rajneesh; Ramachandran, Sabarish; Elangovan, Selvakumar et al. (2015) DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nat Commun 6:6910
Hoffman, Nolan J; Parker, Benjamin L; Chaudhuri, Rima et al. (2015) Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates. Cell Metab 22:922-35
Yang, Pengyi; Zheng, Xiaofeng; Jayaswal, Vivek et al. (2015) Knowledge-Based Analysis for Detecting Key Signaling Events from Time-Series Phosphoproteomics Data. PLoS Comput Biol 11:e1004403
Cinghu, Senthilkumar; Yellaboina, Sailu; Freudenberg, Johannes M et al. (2014) Integrative framework for identification of key cell identity genes uncovers determinants of ES cell identity and homeostasis. Proc Natl Acad Sci U S A 111:E1581-90
Takeda, Yukimasa; Kang, Hong Soon; Freudenberg, Johannes et al. (2014) Retinoic acid-related orphan receptor ? (ROR?): a novel participant in the diurnal regulation of hepatic gluconeogenesis and insulin sensitivity. PLoS Genet 10:e1004331

Showing the most recent 10 out of 34 publications