gamma-Crystallins are associated with cataract in both human and animal models. They may also have stress related roles in other eye tissues, notably retina. We have shown that they can play a role in stabilization of cytoskeleton in lens. g-Crystallins have highly unusual solution properties that fit them for high protein concentration environments. They have stable, tightly folded structures but can unfold to form amyloid like fibrils. We have studied unfolding/refolding in members of the gS-crystallin family from birds and mammals. We have crystallized and solved the three-dimensional structure of chicken gS-crystallin, the first gS to be crystallized. The crystal structure reveals an unexpected mode for gS dimerization. In particular this monomeric protein forms a crystal lattice contact (QR)identical in orientation to the dimerization interface in beta-crystallins. We show that proteins adopting the QR interface exhibit additive molecule dipoles, which suggests an important mechanism for association of crystallins. Although initial experiments suggested that this dimerization does not occur in solution, new AUC data with our collaborators show that gS-crystallins do dimerize at high concentrations similar to those found in the lens. We are also investigating how oxidation and other stresses contribute to crystallin unfolding and aggregation, We now have a crystal structure for a variant of mouse gS under oxidizing conditions. This remarkable structure appears to be an aggregation intermediate involving intra- and inter-molecular S-S bonds, strained domain swapping and progressive loss of secondary structure. This adds important insight into the processes that lead to cataract. Further experiments show that the octameric structure in the crystal forms by dimerization of a disulfide linked tetramer but that geometry does not allow full disulfide formation.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIAEY000255-31
Application #
10019974
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
31
Fiscal Year
2019
Total Cost
Indirect Cost
Name
U.S. National Eye Institute
Department
Type
DUNS #
City
State
Country
Zip Code
Sagar, Vatsala; Chaturvedi, Sumit K; Schuck, Peter et al. (2017) Crystal Structure of Chicken ?S-Crystallin Reveals Lattice Contacts with Implications for Function in the Lens and the Evolution of the ??-Crystallins. Structure 25:1068-1078.e2
Chen, Yingwei; Sagar, Vatsala; Len, Hoay-Shuen et al. (2016) ?-Crystallins of the chicken lens: remnants of an ancient vertebrate gene family in birds. FEBS J 283:1516-30
Zhao, Huaying; Chen, Yingwei; Rezabkova, Lenka et al. (2014) Solution properties of ?-crystallins: hydration of fish and mammal ?-crystallins. Protein Sci 23:88-99
Slingsby, Christine; Wistow, Graeme J (2014) Functions of crystallins in and out of lens: roles in elongated and post-mitotic cells. Prog Biophys Mol Biol 115:52-67
Wistow, Graeme J; Slingsby, Christine (2014) Editorial for special issue: crystallins of the eye. Prog Biophys Mol Biol 115:1-2
Chen, Yingwei; Zhao, Huaying; Schuck, Peter et al. (2014) Solution properties of ?-crystallins: compact structure and low frictional ratio are conserved properties of diverse ?-crystallins. Protein Sci 23:76-87
Slingsby, Christine; Wistow, Graeme J; Clark, Alice R (2013) Evolution of crystallins for a role in the vertebrate eye lens. Protein Sci 22:367-80
Mahler, Bryon; Chen, Yingwei; Ford, Jason et al. (2013) Structure and dynamics of the fish eye lens protein, ?M7-crystallin. Biochemistry 52:3579-87
Wistow, Graeme (2012) The human crystallin gene families. Hum Genomics 6:26
Fan, Jianguo; Dong, Lijin; Mishra, Sanghamitra et al. (2012) A role for ?S-crystallin in the organization of actin and fiber cell maturation in the mouse lens. FEBS J 279:2892-904

Showing the most recent 10 out of 13 publications