Hibernation is a seasonally adaptive strategy that allows hibernators to live through extremely cold conditions. Despite the profound reduction of blood flow to the retinas, hibernation causes no lasting retinal injury. Instead, hibernators show an increased tolerance to ischemic insults during the hibernation period. To understand the molecular changes of the retinas in response to hibernation, we applied an integrative transcriptome and metabolome analysis to explore changes in gene expression and metabolites of 13-lined ground squirrel retinas during hibernation. Metabolomic analysis showed a global decrease of ATP synthesis in hibernating retinas. Decreased glucose and galactose, increased beta-oxidation of carnitine and decreased storage of some amino acids in hibernating retinas indicated a shift of fuel use from carbohydrates to lipids and alternative usage of amino acids. Transcriptomic analysis revealed that the down-regulated genes were enriched in DNA-templated transcription and immune-related functions, while the up-regulated genes were enriched in mitochondrial inner membrane and DNA packaging-related functions. We further showed that a subset of genes underwent active alternative splicing events in response to hibernation. Finally, integrative analysis of the transcriptome and metabolome confirmed the shift of fuel use in the hibernating retina by the regulation of catabolism of amino acids and lipids. Through transcriptomic and metabolomic data, our analysis revealed the altered state of mitochondrial oxidative phosphorylation and the shift of energy source in the hibernating retina, advancing our understanding of the molecular mechanisms employed by hibernators. The data will also serve as a useful resource for the ocular and hibernation research communities.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIAEY000488-09
Application #
9555692
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
2017
Total Cost
Indirect Cost
Name
U.S. National Eye Institute
Department
Type
DUNS #
City
State
Country
Zip Code
Ou, Jingxing; Ball, John M; Luan, Yizhao et al. (2018) iPSCs from a Hibernator Provide a Platform for Studying Cold Adaptation and Its Potential Medical Applications. Cell 173:851-863.e16
Luan, Yizhao; Ou, Jingxing; Kunze, Vincent P et al. (2017) Integrated transcriptomic and metabolomic analysis reveals adaptive changes of hibernating retinas. J Cell Physiol :
Jiang, Zhiwen; Yang, Jiaqi; Dai, Aimei et al. (2017) Ribosome profiling reveals translational regulation of mammalian cells in response to hypoxic stress. BMC Genomics 18:638
Merriman, Dana K; Sajdak, Benjamin S; Li, Wei et al. (2016) Seasonal and post-trauma remodeling in cone-dominant ground squirrel retina. Exp Eye Res 150:90-105
Schmidt, Tiffany M; Alam, Nazia M; Chen, Shan et al. (2014) A role for melanopsin in alpha retinal ganglion cells and contrast detection. Neuron 82:781-8
Miyagishima, Kiyoharu J; Grunert, Ulrike; Li, Wei (2014) Processing of S-cone signals in the inner plexiform layer of the mammalian retina. Vis Neurosci 31:153-63
Kaden, Talia R; Li, Wei (2013) AUTOPHAGY, MITOCHONDRIAL DYNAMICS AND RETINAL DISEASES. Asia Pac J Ophthalmol (Phila) 2:
Mehta, Bhupesh; Snellman, Josefin; Chen, Shan et al. (2013) Synaptic ribbons influence the size and frequency of miniature-like evoked postsynaptic currents. Neuron 77:516-27