Investigation of the RNA polymerase III (RNAP III) system of eukaryotes including tRNA expression, processing, modification and function, was continued, focusing on transcription termination and its links to posttranscriptional 3' processing especially through the function of the La antigen which in humans is a prevelant target of autoantibodies in patients suffering from rheumatic disorders such as neonatal lupus, systemic lupus erythematosus and Sjogrens syndrome. RNAP III produces small RNAs, including the 5S rRNA and tRNAs essential for protein synthesis, as well as certain virus-encoded transcripts. RNAP III is a complex enzyme composed of seventeen subunits with multiple catalytic activities. Human La antigen is a regulatory phosphoprotein that has been shown to serve to link 3' processing with termination by RNAP III, and directing the posttranscripional maturation pathway of the transcripts, the latter of which includes end-processing, intron removal, base modification, and proper RNA folding. The La phosphoprotein interacts with RNAP III transcripts by recognizing their 3 terminal UUU-OH motifs (which result from transcription termination), found at the ends of all newly synthesized pol III transcripts. Nonphosphorylated La is localized in the cytoplasm where it interacts with certain cellular and viral mRNAs including HIV RNA, hepatitis C RNA. poliovirus mRNA and others. La interacts with the internal ribosome entry sites (IRES) of viral and cellular mRNAs to modulate their translation. Some viral-encoded factors, including the adenovirus E1A protein, modulate pol III activity. Poliovirus protease-3 protein cleaves the phosphorylation site and nuclear localization signals away from the body of the La antigen, leading to a mainly cytoplasmic localization that facilitates La-mediated translation of poliovirus mRNA. We are interested in the tRNA anticodon modifications that impact the codon-usage specific translation of specific mRNAs involved in growth and development, with specific emphasis on TRIT1 the enzyme that adds isopentenyl group to A37 of the anticodon of a subset of tRNAs. Understanding the mechanisms by which La and other pol III subunits function in RNA production pathways, and how these pathways are controlled during normal development and cellular proliferation, are major goals of this Section. We extended our focus to La-related proteins (LARPs), including human LARP4 and LARP5, mRNA-associated proteins.

Project Start
Project End
Budget Start
Budget End
Support Year
28
Fiscal Year
2015
Total Cost
Indirect Cost
Name
U.S. National Inst/Child Hlth/Human Dev
Department
Type
DUNS #
City
State
Country
Zip Code
Blewett, Nathan H; Maraia, Richard J (2018) La involvement in tRNA and other RNA processing events including differences among yeast and other eukaryotes. Biochim Biophys Acta Gene Regul Mech 1861:361-372
Blewett, Nathan H; Iben, James R; Gaidamakov, Sergei et al. (2017) La Deletion from Mouse Brain Alters Pre-tRNA Metabolism and Accumulation of Pre-5.8S rRNA, with Neuron Death and Reactive Astrocytosis. Mol Cell Biol 37:
Maraia, Richard J; Arimbasseri, Aneeshkumar G (2017) Factors That Shape Eukaryotic tRNAomes:  Processing, Modification and Anticodon-Codon Use. Biomolecules 7:
Venero Galanternik, Marina; Castranova, Daniel; Gore, Aniket V et al. (2017) A novel perivascular cell population in the zebrafish brain. Elife 6:
Mattijssen, Sandy; Arimbasseri, Aneeshkumar G; Iben, James R et al. (2017) LARP4 mRNA codon-tRNA match contributes to LARP4 activity for ribosomal protein mRNA poly(A) tail length protection. Elife 6:
Maraia, Richard J; Mattijssen, Sandy; Cruz-Gallardo, Isabel et al. (2017) The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives. Wiley Interdiscip Rev RNA 8:
Mattijssen, Sandy; Maraia, Richard J (2016) LARP4 Is Regulated by Tumor Necrosis Factor Alpha in a Tristetraprolin-Dependent Manner. Mol Cell Biol 36:574-84
Arimbasseri, Aneeshkumar G; Iben, James; Wei, Fan-Yan et al. (2016) Evolving specificity of tRNA 3-methyl-cytidine-32 (m3C32) modification: a subset of tRNAsSer requires N6-isopentenylation of A37. RNA 22:1400-10
Arimbasseri, Aneeshkumar G; Maraia, Richard J (2016) A high density of cis-information terminates RNA Polymerase III on a 2-rail track. RNA Biol 13:166-71
Rijal, Keshab; Maraia, Richard J (2016) Active Center Control of Termination by RNA Polymerase III and tRNA Gene Transcription Levels In Vivo. PLoS Genet 12:e1006253

Showing the most recent 10 out of 48 publications