Neural crest cells are an embryonic structure unique to vertebrates that gives rise to multiple lineages including the pigment-producing melanocytes. Pigmentation, defined as the placement of pigment in skin, hair, and eyes for coloration, is distinctive because the location, amount, and type of pigmentation provides a visual manifestation of genetic heterogeneity in pathways regulating the pigment-producing cells. The scope of this genetic heterogeneity ranges from normal to pathological pigmentation phenotypes. Clinically, normal human pigmentation encompasses a variety of skin and hair color as well as punctate pigmentation such as melanocytic nevi (moles) or ephelides (freckles), while abnormal human pigmentation exhibits markedly reduced or increased pigment levels, known as hypopigmentation and hyperpigmentation, respectively. Elucidation of the molecular genetics underlying pigmentation has revealed genes important for melanocyte development and function. Furthermore, many pigmentation disorders show additional defects in cells other than melanocytes, and identification of the genetic insults in these disorders has revealed pleiotropism, where a single gene is required for various functions in different cell types. Thus, unraveling the genetics of easily visualized pigmentation disorders has identified molecular similarities between melanocytes and less visible cell types/tissues, arising from a common developmental origin and/or shared genetic regulatory pathways. We utilize a variety of genetic and genomic approaches to discover the etiology of human pigmentation disorders, often focusing on the fact that the developmental mutations disrupting pigmentation are instructive for understanding abnormal pathways governing related disorders. Melanocyte differentiation: Mutations in the gene encoding transcription factor TFAP2A result in pigmentation anomalies in model organisms and premature hair graying in humans. However, the pleiotropic functions of TFAP2A and its redundantly-acting paralogs have made the precise contribution of TFAP2-type activity to melanocyte differentiation unclear. Defining this contribution may help to explain why TFAP2A expression is reduced in advanced-stage melanoma compared to benign nevi. To identify genes with TFAP2A-dependent expression in melanocytes, we profile zebrafish tissue and mouse melanocytes deficient in Tfap2a, and find that expression of a small subset of genes underlying pigmentation phenotypes is TFAP2A-dependent, including Dct, Mc1r, Mlph, and Pmel. We then conduct TFAP2A ChIP-seq in mouse and human melanocytes and find that a much larger subset of pigmentation genes is associated with active regulatory elements bound by TFAP2A. These elements are also frequently bound by MITF, which is considered the master regulator of melanocyte development. For example, the promoter of TRPM1 is bound by both TFAP2A and MITF, and we show that the activity of a minimal TRPM1 promoter is lost upon deletion of the TFAP2A binding sites. However, the expression of Trpm1 is not TFAP2A-dependent, implying that additional TFAP2 paralogs function redundantly to drive melanocyte differentiation, which is consistent with previous results from zebrafish. Paralogs Tfap2a and Tfap2b are both expressed in mouse melanocytes, and we show that mouse embryos with Wnt1-Cre-mediated deletion of Tfap2a and Tfap2b in the neural crest almost completely lack melanocytes but retain neural crest-derived sensory ganglia. These results suggest that TFAP2 paralogs, like MITF, are also necessary for induction of the melanocyte lineage. Finally, we observe a genetic interaction between tfap2a and mitfa in zebrafish, but find that artificially elevating expression of tfap2a does not increase levels of melanin in mitfa hypomorphic or loss-of-function mutants. Collectively, these results show that TFAP2 paralogs, operating alongside lineage-specific transcription factors such as MITF, directly regulate effectors of terminal differentiation in melanocytes. In addition, they suggest that TFAP2A activity, like MITF activity, has the potential to modulate the phenotype of melanoma cells. Melanocyte cell state: Hypoxia and HIF1 signaling direct tissue-specific gene responses regulating tumor progression, invasion, and metastasis. By integrating HIF1 knockdown and hypoxia-induced gene expression changes, this study identifies a melanocyte-specific, HIF1-dependent/hypoxia-responsive gene expression signature. Integration of these gene expression changes with HIF1 ChIP-Seq analysis identifies 81 HIF1 direct target genes in melanocytes. The expression levels for 10 of the HIF1 direct targets - GAPDH, PKM, PPAT, DARS, DTWD1, SEH1L, ZNF292, RLF, AGTRAP, and GPC6 - are significantly correlated with reduced time of disease-free status in melanoma by logistic regression (P-value=0.0013) and ROC curve analysis (AUC=0.826, P-value<0.0001). This HIF1-regulated profile defines a melanocyte-specific response under hypoxia, and demonstrates the role of HIF1 as an invasive cell state gatekeeper in regulating cellular metabolism, chromatin and transcriptional regulation, vascularization, and invasion.

Project Start
Project End
Budget Start
Budget End
Support Year
19
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Human Genome Research
Department
Type
DUNS #
City
State
Country
Zip Code
Harris, Melissa L; Fufa, Temesgen D; Palmer, Joseph W et al. (2018) A direct link between MITF, innate immunity, and hair graying. PLoS Biol 16:e2003648
Loftus, Stacie K; Baxter, Laura L; Cronin, Julia C et al. (2017) Hypoxia-induced HIF1? targets in melanocytes reveal a molecular profile associated with poor melanoma prognosis. Pigment Cell Melanoma Res 30:339-352
Watkins-Chow, Dawn E; Varshney, Gaurav K; Garrett, Lisa J et al. (2017) Highly Efficient Cpf1-Mediated Gene Targeting in Mice Following High Concentration Pronuclear Injection. G3 (Bethesda) 7:719-722
Crawford, Nicholas G; Kelly, Derek E; Hansen, Matthew E B et al. (2017) Loci associated with skin pigmentation identified in African populations. Science 358:
Seberg, Hannah E; Van Otterloo, Eric; Loftus, Stacie K et al. (2017) TFAP2 paralogs regulate melanocyte differentiation in parallel with MITF. PLoS Genet 13:e1006636
Saldana-Caboverde, Amy; Perera, Erasmo M; Watkins-Chow, Dawn E et al. (2015) The transcription factors Ets1 and Sox10 interact during murine melanocyte development. Dev Biol 407:300-12
Fufa, Temesgen D; Harris, Melissa L; Watkins-Chow, Dawn E et al. (2015) Genomic analysis reveals distinct mechanisms and functional classes of SOX10-regulated genes in melanocytes. Hum Mol Genet 24:5433-50
Hwang, Hun-Way; Baxter, Laura L; Loftus, Stacie K et al. (2014) Distinct microRNA expression signatures are associated with melanoma subtypes and are regulated by HIF1A. Pigment Cell Melanoma Res 27:777-87
Fufa, Temesgen D; Pavan, William J (2014) Axing the cancer loop. Pigment Cell Melanoma Res 27:691-3
Watkins-Chow, Dawn E; Cooke, Joanna; Pidsley, Ruth et al. (2013) Mutation of the diamond-blackfan anemia gene Rps7 in mouse results in morphological and neuroanatomical phenotypes. PLoS Genet 9:e1003094

Showing the most recent 10 out of 26 publications