Previously we have studies the contribution of histone modifications and their regulatory enzymes to transcriptional regulation in a variety of cellular systems. Our latest efforts have focused on the novel function of DNA methylation in the mammalian genomes. Although the function of DNA methylation in gene promoter regions is well established in transcriptional repression, the function of the evolutionarily conserved widespread distribution of DNA methylation in gene body regions remains incompletely understood. Here, we show that DNA methylation is enriched in included alternatively spliced exons (ASEs) and inhibiting DNA methylation results in aberrant splicing of ASEs. The methyl-CpG binding protein MeCP2 is enriched in included ASEs, particularly those that are also highly DNA methylated, and inhibition of DNA methylation disrupts specific targeting of MeCP2 to exons. Interestingly, ablation of MeCP2 results in increased nucleosome acetylation and aberrant skipping events of ASEs. We further show that inhibition of histone deacetylases leads to a highly significant overlap of exon skipping events caused by knocking-down MeCP2. Together, our data indicate that intragenic DNA methylation operates in exon definition to modulate alternative splicing and can enhance exon recognition via recruitment of the multifunctional protein MeCP2, which thereby maintains local histone hypoacetylation through its established interaction with HDACs.

Project Start
Project End
Budget Start
Budget End
Support Year
11
Fiscal Year
2013
Total Cost
$1,453,527
Indirect Cost
Name
National Heart, Lung, and Blood Institute
Department
Type
DUNS #
City
State
Country
Zip Code
Baranello, Laura; Kouzine, Fedor; Wojtowicz, Damian et al. (2018) Mapping DNA Breaks by Next-Generation Sequencing. Methods Mol Biol 1672:155-166
Yohe, Marielle E; Gryder, Berkley E; Shern, Jack F et al. (2018) MEK inhibition induces MYOG and remodels super-enhancers in RAS-driven rhabdomyosarcoma. Sci Transl Med 10:
Hodges, H Courtney; Stanton, Benjamin Z; Cermakova, Katerina et al. (2018) Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers. Nat Struct Mol Biol 25:61-72
Resto, Melissa; Kim, Bong-Hyun; Fernandez, Alfonso G et al. (2017) O-GlcNAcase is an RNA polymerase II elongation factor coupled to pausing factors SPT5 and TIF1?. J Biol Chem 292:16524-16525
Gryder, Berkley E; Yohe, Marielle E; Chou, Hsien-Chao et al. (2017) PAX3-FOXO1 Establishes Myogenic Super Enhancers and Confers BET Bromodomain Vulnerability. Cancer Discov 7:884-899
Miller, Erik L; Hargreaves, Diana C; Kadoch, Cigall et al. (2017) TOP2 synergizes with BAF chromatin remodeling for both resolution and formation of facultative heterochromatin. Nat Struct Mol Biol 24:344-352
Nakayama, Robert T; Pulice, John L; Valencia, Alfredo M et al. (2017) SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat Genet 49:1613-1623
Stanton, Benjamin Z; Hodges, Courtney; Calarco, Joseph P et al. (2017) Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat Genet 49:282-288
Cooper, James; Ding, Yi; Song, Jiuzhou et al. (2017) Genome-wide mapping of DNase I hypersensitive sites in rare cell populations using single-cell DNase sequencing. Nat Protoc 12:2342-2354
Stanton, Benjamin Z; Hodges, Courtney; Crabtree, Gerald R et al. (2017) A General Non-Radioactive ATPase Assay for Chromatin Remodeling Complexes. Curr Protoc Chem Biol 9:1-10

Showing the most recent 10 out of 118 publications