As part of the Population Sciences Branch (PSB), the Levy Lab conducts genetic and multidimensional omics research focused on cardiovascular disease (CVD) and its risk factors. The two central areas of the Levy Labs intramural research: 1) blood pressure (BP) genetics 2) multidimensional omics of BP and CVD The Levy Lab leverages the exceptional genotype and phenotype resources of the Framingham Heart Study (FHS) as well as NIH intramural resources including NHLBIs DNA Sequencing and Genomics Core Laboratory, CITs Mathematical and Statistical Computing Laboratory, and NCBIs Computational Biology and Informational Engineering Branches. The Levy Lab was highly productive during the past four-year interval with over 100 publications. Goals for the PSB and Levy Lab: Goal 1: Identify genetic contributions to BP. Hypertension affects 80 million adults in the U.S. and it is a major contributor to multiple forms of CVD including coronary heart disease (CHD), stroke, and heart failure. Dr. Levys research in hypertension focuses on cross-cutting studies of its genetic, transcriptomic, and epigenetic underpinnings. To advance research in the area of BP genetics, Dr. Levy leads or co-leads several large BP consortium working groups. BP projects summarized in this report include: new genome-wide association studies of common BP variants, studies of uncommon and rare BP variants from exome sequencing and Exome Chip genotyping, and sequencing the mitochondrial genome to find rare variants with large effects on BP. These complementary approaches have succeeded in identifying scores of novel variants and genes associated with BP. The results of Dr. Levys research provide clues to novel genes and pathways involved in BP regulation and highlight potential therapeutic targets for the treatment of hypertension and the prevention of its sequelae. Goal 2: Apply multidimensional omics to identify biomarker signatures of BP and CVD. Under Dr. Levys leadership, NHLBI initiated a high-risk, high-reward research program called the Systems Approach to Biomarker Research in Cardiovascular Disease Initiative (SABRe CVD) that applied multidimensional omics technologies at the population level to accelerate the discovery of biomarker signatures of CVD and its risk factors. Identifying novel CVD biomarkers has important implications for understanding disease biology and developing targeted prevention strategies in the preclinical phase of CVD when intervention is most likely to be effective. Discovering highly predictive biomarkers of CVD risk could represent a breakthrough for risk stratification if this approach improves upon current risk assessment methods. The SABRe CVD Initiative introduced four omics resources Project 1: discovery proteomics, metabolomics, and lipidomics Project 2: multiplexed immunoassays of high value candidate proteins Project 3: genome-wide transcriptomic profiling Project 4: microRNA profiling An additional omics resource recently introduced by the Levy Lab using DIR resources is genome-wide characterization of DNA methylation. Additionally, PSB is initiating two new research programs in FY2017: 1. Measure Extracellular RNA in Framingham Participants 2. Conduct state of the art RNA Sequencing in over 1000 Framingham Participants Extracellular RNAs (exRNAs) impact a wide range of biological processes and function to transfer genetic information between cells. In doing so, exRNAs affect cell-to-cell communications. Recent studies indicate that exRNAs are associated with a variety of diseases. Emerging data from elderly participants in the Framingham Heart Study (FHS) demonstrate that circulating levels of exRNA are correlated with several key traits including age, sex, and body mass index. Much more work is needed to determine the extent to which exRNAs are associated with a variety of clinically relevant traits across the age spectrum. The primary aim RNA Sequencing will be the identification of expression quantitative trait loci (eQTLs) genome wide via the alignment of whole genome DNA sequencing and RNA sequencing. This approach will also permit the assessment of allele specific expression genome wide and alternative splicing QTLs (sQTLs) genome wide. A genome-wide resource of eQTLs and sQTLs would be a major contribution to the literature and would aid in the interpretation of genome-wide association studies In the past year, PSB has made several recent advances in analysis of multidimensional omics data including: discovery and targeted proteomics of CHD, transcriptomic and systems biology analyses of BP and CHD, DNA methylation signatures of BP, and integrative genomic approaches to identify mechanisms underlying CVD traits and promising therapeutic targets for treatment and prevention. We seek to expand these advances and add more complimentary data sets to delve deeper and deeper into genetic modification of subclinical atherosclerotic cardiovascular diseases.

Project Start
Project End
Budget Start
Budget End
Support Year
10
Fiscal Year
2016
Total Cost
Indirect Cost
Name
U.S. National Heart Lung and Blood Inst
Department
Type
DUNS #
City
State
Country
Zip Code
Mendelson, Michael M; Johannes, Roby; Liu, Chunyu et al. (2018) Epigenome-Wide Association Study of Soluble Tumor Necrosis Factor Receptor 2 Levels in the Framingham Heart Study. Front Pharmacol 9:207
Lin, Honghuang; Lunetta, Kathryn L; Zhao, Qiang et al. (2018) Whole Blood Gene Expression Associated with Clinical Biological Age. J Gerontol A Biol Sci Med Sci :
Yao, Chen; Chen, George; Song, Ci et al. (2018) Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease. Nat Commun 9:3268
Marioni, Riccardo E; McRae, Allan F; Bressler, Jan et al. (2018) Meta-analysis of epigenome-wide association studies of cognitive abilities. Mol Psychiatry 23:2133-2144
Ho, Jennifer E; Lyass, Asya; Courchesne, Paul et al. (2018) Protein Biomarkers of Cardiovascular Disease and Mortality in the Community. J Am Heart Assoc 7:
Lu, Ake T; Xue, Luting; Salfati, Elias L et al. (2018) GWAS of epigenetic aging rates in blood reveals a critical role for TERT. Nat Commun 9:387
Aslibekyan, Stella; Agha, Golareh; Colicino, Elena et al. (2018) Association of Methylation Signals With Incident Coronary Heart Disease in an Epigenome-Wide Assessment of Circulating Tumor Necrosis Factor ?. JAMA Cardiol 3:463-472
Liu, C; Marioni, R E; Hedman, Å K et al. (2018) A DNA methylation biomarker of alcohol consumption. Mol Psychiatry 23:422-433
Shah, Ravi V; Rong, Jian; Larson, Martin G et al. (2018) Associations of Circulating Extracellular RNAs With Myocardial Remodeling and Heart Failure. JAMA Cardiol 3:871-876
Liu, Chunyu; Fetterman, Jessica L; Liu, Poching et al. (2018) Deep sequencing of the mitochondrial genome reveals common heteroplasmic sites in NADH dehydrogenase genes. Hum Genet 137:203-213

Showing the most recent 10 out of 242 publications