The staff of the Protein Puriication Core (PPC) use a number of techniques for effective protein production. The PPC has access to a wide variety of tools for the expression of recombinant protein in Escherichia coli, including many types of plasmid expression vectors and specialized bacterial strains. There is a rather large collection of strains to choose from, with genetic defects that influence proteolytic activity, mRNA stability, membrane permeability, and intracellular redox potential. In addition, there are strains that overproduce protein disulfide isomerase, molecular chaperones, and redox enzymes for coexpression with target proteins. There is an equally large and diverse collection of bacterial plasmid vectors for recombinant protein expression. Many of these use the Gateway cloning technology, making them quick and easy to use. The PPC staff has experience with all of the major regulatory systems (e.g., T7, tac, PBAD, trc, λPL) and various formats for the production of recombinant proteins (untagged or fused to MBP, GST, NusA, thioredoxin, His-tag, Arg-tag, FLAG-tag and the biotin acceptor peptide) to make full use of these reagents. The PPC personnel are experienced with all standard chromatography techniques required for protein purification. The core maintains a full array of supplies necessary for ion exchange, hydrophobic interaction, lectin, hydroxyapatite, dye, size exclusion, and affinity chromatography. Materials for chromatofocusing are also on hand. In addition to purification technology, the staff is very knowledgeable of methods required to characterize recombinant protein products. Among those used are gel electrophoresis and isoelectric focusing, mass spectroscopy, western analysis, N-terminal sequencing, dynamic light scattering and analytical ultracentrifugation, and circular dichroism spectroscopy. For structural studies, the PPC has in place standard operating procedures for the production of isotopically enriched proteins for heteronuclear Nuclear Magnetic Resonance experiments and selenomethionine-substituted proteins for crystallography. Methods have been established that eliminate the need to change bacterial cell type by manipulating the medium formulation and induction parameters, and produce recombinant protein at levels equivalent to the wildtype expression. For those proteins that fail to crystallize, the core can perform limited proteolysis as a way to identify potential structural domains, providing the Macromolecular Crystallography Laboratory investigator additional avenues for structural studies. This method has been extensively used both analytically, and on a preparative scale to produce structural domains that can be purified using conventional chromatography. The core produces and maintains three different kinds of tobacco etch virus (TEV) protease that are used by the Macromolecular Crystallography Laboratory for in vitro cleavage of fusion proteins that contain an intervening protease recognition sequence. Available are an N-terminal tagged His6-TEV protease, an untagged TEV protease and a Maltose Binding Protein-TEV protease fusion protein. All contain a mutation that minimizes autoinactivation. Each has its advantage depending on the design of the protein purification scheme.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Scientific Cores Intramural Research (ZIC)
Project #
1ZICBC011016-02
Application #
7970000
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
2009
Total Cost
$362,288
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Gumpena, Rajesh; Lountos, George T; Raran-Kurussi, Sreejith et al. (2018) Crystal structure of the human dual specificity phosphatase 1 catalytic domain. Protein Sci 27:561-567
Zlotkowski, Katherine; Hewitt, William M; Sinniah, Ranu S et al. (2017) A Small-Molecule Microarray Approach for the Identification of E2 Enzyme Inhibitors in Ubiquitin-Like Conjugation Pathways. SLAS Discov 22:760-766
Raran-Kurussi, Sreejith; Cherry, Scott; Zhang, Di et al. (2017) Removal of Affinity Tags with TEV Protease. Methods Mol Biol 1586:221-230
Miller Jenkins, Lisa M; Feng, Hanqiao; Durell, Stewart R et al. (2015) Characterization of the p300 Taz2-p53 TAD2 complex and comparison with the p300 Taz2-p53 TAD1 complex. Biochemistry 54:2001-10
Shaw, Gary X; Li, Yue; Shi, Genbin et al. (2014) Structural enzymology and inhibition of the bi-functional folate pathway enzyme HPPK-DHPS from the biowarfare agent Francisella tularensis. FEBS J 281:4123-37
Bhaumik, Prasenjit; Davis, Jamaine; Tropea, Joseph E et al. (2014) Structural insights into interactions of C/EBP transcriptional activators with the Taz2 domain of p300. Acta Crystallogr D Biol Crystallogr 70:1914-21
Raran-Kurussi, Sreejith; Tözsér, József; Cherry, Scott et al. (2013) Differential temperature dependence of tobacco etch virus and rhinovirus 3C proteases. Anal Biochem 436:142-4
Lountos, George T; Tropea, Joseph E; Waugh, David S (2013) Structure of the Trypanosoma cruzi protein tyrosine phosphatase TcPTP1, a potential therapeutic target for Chagas' disease. Mol Biochem Parasitol 187:1-8
Hogan, Megan; Bahta, Medhanit; Cherry, Scott et al. (2013) Biomolecular Interactions of small-molecule inhibitors affecting the YopH protein tyrosine phosphatase. Chem Biol Drug Des 81:323-33
Lountos, George T; Tropea, Joseph E; Waugh, David S (2012) Structure of the cytoplasmic domain of Yersinia pestis YscD, an essential component of the type III secretion system. Acta Crystallogr D Biol Crystallogr 68:201-9

Showing the most recent 10 out of 25 publications