We have performed extensive characterization of the 21 Bush-era human embryonic stem cells and deposited the data with NCBI GEO for public access. We have created a user-friendly gene expression search engine which allows a casual user to interrogate the data for their particular gene of interest. In our mission to facilitate pluripotent stem cell research, we have performed in-depth characterization of a control induced pluripotent stem cell (iPSC) line, BC1. This includes FACS analysis and immunocytochemistry as well as RNA extraction for gene expression analysis which will be performed on Agilent microarray chips. We have also generated some reporter embryonic stem cell lines which are currently undergoing evaluation and characterization. In terms of bringing pluripotent stem cells to the clinic we have been evaluating novel xeno-free substrates, media and small molecule inhibitors. In addition, since many iPSC lines have been generated on campus using a LoxP flanked polycistronic vector we have also been testing methods to excise the foreign DNA with Cre recombinase. In collaboration with the NIH CRM, we have generated iPSCs derived from neuronal precursors differentiated from H1 ES cell lines for comparison them to the parental line. These isogenic lines will enable a clear comparison of hESC and hiPSCs. We have continued the study of critical genetic and biochemical pathways that control genome stability, cellular stresses, cell growth, and differentiation. We have generated an efficient cell culture system based on the non-colony type monolayer method for controlling pluripotent cell growth. We have also provided important insights into the role of surface markers in the regulation of the pluripotent states and differentiation processes of human pluripotent stem cells. Finally, we have been involved in mentoring and teaching standard and feeder-free, pluripotent stem cell culture, assisting and advising on the generation of iPSCs from patient samples as well as assisting and advising on differentiation strategies as requested. We update the SCU website with protocols and information as it becomes available to aid other researchers in their studies.

Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
2012
Total Cost
$793,583
Indirect Cost
City
State
Country
Zip Code
Jiang, Xueying; Detera-Wadleigh, Sevilla D; Akula, Nirmala et al. (2018) Sodium valproate rescues expression of TRANK1 in iPSC-derived neural cells that carry a genetic variant associated with serious mental illness. Mol Psychiatry :
Chen, Kevin G; Mallon, Barbara S; Park, Kyeyoon et al. (2018) Pluripotent Stem Cell Platforms for Drug Discovery. Trends Mol Med 24:805-820
Ou, Jingxing; Ball, John M; Luan, Yizhao et al. (2018) iPSCs from a Hibernator Provide a Platform for Studying Cold Adaptation and Its Potential Medical Applications. Cell 173:851-863.e16
Vallabhaneni, Haritha; Lynch, Patrick J; Chen, Guibin et al. (2018) High Basal Levels of ?H2AX in Human Induced Pluripotent Stem Cells Are Linked to Replication-Associated DNA Damage and Repair. Stem Cells :
Horikawa, Izumi; Park, Kye-Yoon; Isogaya, Kazunobu et al. (2017) ?133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells. Cell Death Differ 24:1017-1028
Nandal, Anjali; Mallon, Barbara; Telugu, Bhanu P (2017) Efficient Generation and Editing of Feeder-free IPSCs from Human Pancreatic Cells Using the CRISPR-Cas9 System. J Vis Exp :
Lin, Yongshun; Linask, Kaari L; Mallon, Barbara et al. (2016) Heparin Promotes Cardiac Differentiation of Human Pluripotent Stem Cells in Chemically Defined Albumin-Free Medium, Enabling Consistent Manufacture of Cardiomyocytes. Stem Cells Transl Med :
Bhadriraju, Kiran; Halter, Michael; Amelot, Julien et al. (2016) Large-scale time-lapse microscopy of Oct4 expression in human embryonic stem cell colonies. Stem Cell Res 17:122-9
Lee, Chun-Ting; Chen, Jia; Kindberg, Abigail A et al. (2016) CYP3A5 Mediates Effects of Cocaine on Human Neocorticogenesis: Studies using an In Vitro 3D Self-Organized hPSC Model with a Single Cortex-Like Unit. Neuropsychopharmacology :
Cerbini, Trevor; Funahashi, Ray; Luo, Yongquan et al. (2015) Transcription activator-like effector nuclease (TALEN)-mediated CLYBL targeting enables enhanced transgene expression and one-step generation of dual reporter human induced pluripotent stem cell (iPSC) and neural stem cell (NSC) lines. PLoS One 10:e0116032

Showing the most recent 10 out of 25 publications