Large, complex, multi-scale, multi-physics simulation codes, running on high performance computing (HPC) platforms, are essential to advancing science and engineering research in disciplines such as lattice field theory, astrophysics and cosmology, computational fluid dynamics/fluid structure interaction,and high energy density physics. Progress in computational science together with the adoption of high-level frameworks and modular development have produced widely used community simulation software specific to individual communities. These state-of-the-art codes have been under development and optimization for several years and currently simulate multi-scale, multi-physics phenomena with unprecedented fidelity on petascale platforms. Currently each of these codes have solvers with varied performance characteristics, but all face challenges because of changing hardware architecture. Efforts underway to cope with these challenges, are largely fragmented. While it is true that the scientific codes used in various domains differ significantly from one another, many solutions are likely to be conceptually similar, even if they differ in details. The goal of the proposed conceptualization project, Software Institute for Methodologies and Abstractions for Codes (SIMAC) is to find common abstractions and frameworks applicable across a broad range of applications through cooperation, coordination and interdisciplinary interactions among the participants. The core group of participating codes includes FLASH (astrophysics, cosmology, CFD, HEDP), Cactus (CFD, numerical relativity, and quantum relativity), the code suite used by the Lattice QCD community, and Enzo (cosmology).

The proposed collaborative research will produce benefit beyond the four simulation codes and collaborating institutions by exploring: a common software infrastructure applicable to a broad range of science and engineering application domains; an engagement model between computer science research and application development; a multidisciplinary immersion program for research, education and training of students, postdoctoral fellows and visitors on future platform architectures.

Agency
National Science Foundation (NSF)
Institute
Division of Advanced CyberInfrastructure (ACI)
Type
Standard Grant (Standard)
Application #
1228680
Program Officer
Rudolf Eigenmann
Project Start
Project End
Budget Start
2012-09-15
Budget End
2015-02-28
Support Year
Fiscal Year
2012
Total Cost
$52,344
Indirect Cost
Name
Boston University
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02215