The research team, in this collaborative proposal, aims to produce regional decadal-scale climate forecasts from paleo proxy data. Generally, the researchers will improve existing analytical methods and develop new statistical methods for the reconstruction of past climates from heterogeneous geological proxies (tree rings, ice cores, speleothems, corals, sediments), with particular emphasis on regional variability over the past two millennia.

Specifically, the research team will use the regularized expectation-maximization algorithm (RegEM) algorithm to exploit linear covariation in space among different climate variables or proxies to impute missing values and estimate climate statistics. The goal is to directly address uncertainties in data, especially surrounding missing data within a series. This is important for paleoclimate data sets since the spatial or temporal series may not be continuous.

The broader impacts involve the training of students across disciplinary boundaries in a timely integration of statistics and climatology.

Agency
National Science Foundation (NSF)
Institute
Division of Atmospheric and Geospace Sciences (AGS)
Type
Standard Grant (Standard)
Application #
1003818
Program Officer
David J. Verardo
Project Start
Project End
Budget Start
2010-06-15
Budget End
2015-05-31
Support Year
Fiscal Year
2010
Total Cost
$291,582
Indirect Cost
Name
University of Southern California
Department
Type
DUNS #
City
Los Angeles
State
CA
Country
United States
Zip Code
90089