This collaborative project combines observational and theoretical efforts with a goal of improving knowledge of magnetic fields on low mass stars. They will use high precision lightcurves of M-dwarfs from the Kepler satellite to probe starspots on late type stars to determine how stellar mass and rotation affect local magnetic fields. They will use data already acquired from Kepler, and new photometry with moderate sized (1-m aperture) robotic telescopes and new spectra with the Canada-France-Hawaii Telescope. Starspots are short-lived areas on the surfaces of stars that are caused by magnetic activity. The researchers will also investigate the effect of magnetic fields on fundamental stellar properties, such as temperature, luminosity and radius as a function of M-dwarf mass. They will also determine the relative importance of magnetic fields on observatory activity, such as flares and hydrogen-alpha emission.
Broader impacts include providing research opportunities to undergraduate students in STEM majors, with an effort to broaden participation by students from traditionally underrepresented minority groups. They will also engage a group of amateur astronomers to obtain time series photometry of bright eclipsing binary stars.