This EARS (Enhancing Access to the Radio Spectrum) program was founded in response to the 2010 Presidential Memorandum on Unleashing the Wireless Broadband Revolution mandated by Congress as part of the National Broadband Plan. It was referenced in 2010 State of the Union and later on the Middle Class Tax Relief and Job Creation Act of 2012 (More than 1/3 of the bill deals with radio spectrum), the PCAST 2012 Report [President's Council of Advisors on Science and Technology] (which calls for vastly increased use of spectrum sharing) and the 2013 Presidential memo (Expanding America's Leadership in Wireless Innovation). The aim of this program is to identify bold new concepts with the potential to contribute to significant improvements in the efficiency of radio spectrum utilization, protection of passive sensing services, and in the ability for traditionally underserved Americans to benefit from current and future wireless-enabled goods and services. The impact is large on the economics of the Nation as seen on the last FCC bidding of 65MHz of the spectrum for over $45 billion early in 2015. It will enable access to science, engineering, industry, civilian and military users of the radio frequency (RF) spectrum.

The staggering growth of wireless communications systems has led to an increasing demand for spectrum to support commercial services, particularly in the frequencies below 3 GHz, where battery-powered mobile devices such as smart phones and tablets operate most efficiently. It is desirable for such devices to be useful for a variety of applications, and in a variety of locations that have differing available spectrum. Currently this is achieved, in a smart phone for example, by a collection of hardware solutions, with one for each standard. This is complex and expensive, and such receivers will not be sufficiently adaptable for future spectrum usage. It is desirable to have a single hardware solution that is capable of receiving a broad spectrum and then selecting a particular transmission from it a based on the local spectral conditions and the application. Adaptable solutions such as this do not currently exist due in large part to the interference that occurs when a desired signal is weak and is crowded by a channel containing a high power signal. There are high dynamic range receivers that tolerate such disparate signal levels, but they are not adaptable over large bandwidths. In this project, a novel high-dynamic range receiver topology that promises to enable the reception of a wide instantaneous bandwidth will be explored. The topology is enabled by new signal processing concepts and integrated circuit technologies. The research undertaken will range from the basic theory to experimental demonstration.

Agency
National Science Foundation (NSF)
Institute
Division of Astronomical Sciences (AST)
Type
Standard Grant (Standard)
Application #
1547278
Program Officer
Jon Williams
Project Start
Project End
Budget Start
2016-01-01
Budget End
2020-12-31
Support Year
Fiscal Year
2015
Total Cost
$649,199
Indirect Cost
Name
University of Massachusetts Amherst
Department
Type
DUNS #
City
Hadley
State
MA
Country
United States
Zip Code
01035