Brain-machine interfaces (BMIs) are devices that allow a subject to control objects directly using brain signals. Such devices offer the potential to significantly improve the quality of life of locked-in, paralyzed, or disabled individuals by allowing them to communicate via virtual keyboards and control prosthetic robotic devices. The two dominant paradigms for brain-machine interfacing today rely on non-invasive recording from the scalp (EEG) and invasive techniques based on intracortical implants. EEG signals are extremely noisy, thereby limiting the bandwidth of control signals that can be reliably extracted. Intracortical implants on the other hand yield stronger signals but pose serious health risks.
In this proposal, the PI describes a research program for investigating BMIs based on electrocorticography (ECoG), a relatively new technique that involves recording signals subdurally from the brain surface. These signals have much higher signal-to-noise ratio than EEG signal while at the same time, pose lesser risks than techniques that penetrate the brain surface. The proposed research will address the following key issues:
(1) Exploiting high frequency ECoG signals for BMI: Recent work has shown the existence of broad-spectral ECoG changes at high frequencies during movement and imagery. The PI and his team will explore the application of such ECoG modulation for multi-dimensional control in BMIs. (2) Neural plasticity of local cortical circuits during BMI: The PI's team will investigate the dynamic range of the spectral changes in ECoG and analyze the adaptations that occur due to brain plasticity during BMI control. This will help pave the way for controlling 3 or more degrees of freedom in a BMI from a single control electrode.
(3) Abstraction of control signals: After extended periods of BMI use, many patients report no longer imagining moving a control limb but rather concentrating on the desired result of the BMI task itself. The PI and his team will explore the creation of new cortical communication pathways underlying such abstraction and leverage these new control signals in expanding the bandwidth of the BMI. (4) Applications of new control signals to novel BMI paradigms: The BMI techniques will be tested using virtual devices such as cursor-driven menu systems for communication as well as more complex robotic systems such as a prosthetic robotic hand and a humanoid robot. The educational component of the project involves curriculum development, interdisciplinary training for graduate and undergraduate students, and outreach to K-12 students.
Intellectual Merit: The proposed research represents one of the first efforts to exploit ECoG and the brain's plasticity to build BMIs that can control devices with large degrees of freedom. The study of abstraction of control signals and its application to robotic BMIs is also novel. Broader Impact: If successful, this research will lead to new ECoG-based BMI systems that will surpass the abilities of current BMIs by relying on the brain's ability to adapt to novel control scenarios and leveraging the large-scale population-level electrical activity measured by ECoG. The project will enable the training of graduate students in a multidisciplinary environment. Promising undergraduates, including students from underrepresented groups, will gain valuable research experience in preparation for industrial and academic careers. A K-12 outreach effort will enable students from local area schools to visit the laboratories of the PIs and gain hands-on experience in the emerging field of brain-machine interfaces.