With the rapid spread of the Coronavirus Disease 2019 (COVID-19) worldwide, highly-protective respirator masks can be crucial to safeguard the uninfected population. While virus transmission occurs via tiny aerosols, current mask coverings rely purely on passive filters; and can benefit from enhanced aerosol-collection and virus-inactivation mechanisms. We propose to engineer a highly-efficient, easy-to-use, cost-effective respirator design that will be significantly more efficient at capturing tiny aerosols. A combination of copper-based filters and an air-transmission passage inspired by nasal structures in animals with an enhanced sense of smell will facilitate droplet capture, followed by virus inactivation via thermal and ionic effects. The final respirator design will directly address the urgent global shortage and immediate national need for more effective masks. By preventing nosocomial transmission, the product can also be a critical game-changer for the healthcare community. For an accelerated concept-to-product transition, we will seek collaborations with virology labs and pharmaceutical companies for detailed testing with live COVID samples.

This collaborative project will engineer a novel, highly-efficient, virus-preventive respirator mask inspired by nasal structures in animals with enhanced olfactory sensitivity. Small aerosol droplets that can carry viruses will be captured from inhaled air by using a combination of copper-based filters and a bio-inspired tortuous passage with periodic thermal gradients induced by spiral copper wires. The aerosol capture will be articulated by modulating the dynamics of flow structures in the convoluted geometry (vortex trap) and by thermophoresis action along the respirator’s internal walls (thermal trap). Cyclic cold/hot temperature changes on the walls, along with ionic activity from the copper material, will be used to inactivate the trapped viruses. The use of these mechanisms is supported by published observations on earlier and current strains of coronavirus. The project will integrate the theoretical, experimental, and computational expertise of the principal investigators in optimizing the design for a new-age respirator, which can be radically more effective at preventing the transmission of COVID-19. To meet the urgent public need, the researchers will establish collaborations with pharmaceutical and manufacturing companies as well as university-based Biosafety Level – 3 lab units for non-clinical in vivo testing and to ensure rapid prototype development of the proposed respirator masks.

This project is jointly funded by the Thermal Transport Processes program and the Established Program to Stimulate Competitive Research (EPSCoR).

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Project Start
Project End
Budget Start
2020-05-01
Budget End
2022-04-30
Support Year
Fiscal Year
2020
Total Cost
$62,824
Indirect Cost
Name
South Dakota State University
Department
Type
DUNS #
City
Brookings
State
SD
Country
United States
Zip Code
57007