The objective of this project is to explore leveraging emerging nanoscale spin-orbit torque magnetic random access memory (SOT-MRAM) to develop a non-volatile in-memory processing unit that could simultaneously work as non-volatile memory and a co-processor for next-generation energy efficient and high performance computing system. Such energy efficient in-memory computing system integrates logic and memory units by exploring innovations from emerging spintronic device technology to non-Von Neumann architecture, which is targeting to tackle power wall and memory wall bottlenecks in traditional computing system. It will be crucial for industry and academia to identify next-generation energy efficient and high performance computing platform design. The project also has education and outreach components including new curriculum in post-CMOS devices and circuits for undergraduate/graduate students, engineering outreach to diverse population and other underrepresented groups at the University of central Florida. The project will also directly involve minority and female graduate/ undergraduate students.
The proposed research requires synergistic exploration spanning from device technology to architecture innovation. Specifically, it consists of three research thrusts: (i) exploring novel SOT-MRAM memory array that could implement in-memory logic (AND/OR/XOR) without add-on logic circuits; (ii) investigating non-volatile in-memory processing unit (MPU) architecture that could simultaneously work as nonvolatile memory and co-processor to pre-process raw data within memory to accelerate data/computing intensive applications without sacrificing memory capacity; (iii) exploring MPU to implement in-memory convolution to greatly reduce data communication and accelerate state-of-the-art deep learning convolutional neural networks.