This collaborative project brings together faculty and scientists at the University of Denver and the University of Colorado at Boulder to study new materials and concepts in organic photovoltaics (OPV). It combines new mathematical methods to describe photonic processes with novel plasmonic nanostructures for enhancing optical absorption and new organic semiconductors for control of exciton flow and charge carrier dynamics. The theoretical foundations of linear and nonlinear processes in surface plasmons and their interactions with organic chromophores are explored, and the interplay between surface plasmons and Förster Resonant Energy Transfer (FRET) is investigated. New organic molecules are synthesized that incorporate graphenic and other moieties with exceptional charge transport and excited-state properties along with liquid-crystalline functionality for improved molecular ordering. The overall goal is to enhance the density of excitons created in OPV devices to enable higher efficiencies as well as coherent control of excited state dynamics and multiexciton phenomena. The work entails significant collaborations with the National Renewable Energy Laboratory and the University of Toronto.

This project aims to advance the fundamental knowledge of OPV materials and mechanisms and to provide impetus for moving OPV to the broader market as a low-cost solar energy technology that can be produced on a truly large scale. The interdisciplinary nature of the project gives graduate students and postdoctoral trainees exposure to a variety of research settings and fosters their learning and career growth. The project generates educational materials that are broadly disseminated through websites and through the National Science, Technology, Engineering, and Mathematics Education Digital Library (NSDL). Outreach activities for local high school science teachers in the Denver and Boulder areas enable hands-on experience with intensive workshops on solar energy and nanotechnology. Demonstrations, exhibits, and instructional materials are provided to Colorado institutions such as the Wings Over the Rockies Air & Space Museum and the Mamie Dowd Eisenhower Library.

Agency
National Science Foundation (NSF)
Institute
Division of Chemistry (CHE)
Type
Standard Grant (Standard)
Application #
1125935
Program Officer
Suk-Wah Tam-Chang
Project Start
Project End
Budget Start
2011-09-01
Budget End
2016-08-31
Support Year
Fiscal Year
2011
Total Cost
$1,250,000
Indirect Cost
Name
University of Colorado at Boulder
Department
Type
DUNS #
City
Boulder
State
CO
Country
United States
Zip Code
80303