In this project funded by the Chemical Synthesis Program of the Chemistry Division, Professor Matthew T. Whited of Carleton College works with a research group of undergraduate students to investigate the preparation and reactivity of new complexes featuring transition metal/main-group bonds with acidic and basic sites. In these systems an electron-rich transition metal works synergistically with an electron-poor main-group to facilitate difficult reactions. This allows the development of new selective transformations of industrially and environmentally important molecules such as carbon dioxide and hydrocarbons. This project is developing earth abundant metal catalysts to convert carbon dioxide into chemical feedstocks. This is important contribution to achieving sustainability. As such the project contributes to the Sustainable Chemistry, Engineering, and Materials (SusChEM) effort. Professor Whited is also developing course-based undergraduate research experiences (CUREs) at Carleton College and working with an outreach program to bring local high-school students into Carleton College chemistry laboratories.
This project seeks to understand and develop reactions around late-metal/main-group interactions using complexes featuring constrained metal-silicon single and multiple bonds as prototypes. In order to constrain the metal-silicon linkage, the silyl group is tethered into an easily modified pincer-type ligand. The "electronic frustration" resulting from the disparity between electron-rich late metals and electropositive silicon, combined with the kinetic lability of bonds to each, allows the development of a cooperative approach to strong-bond activation with applications in catalytic hydrocarbon oxidation and carbon dioxide reduction. Spectroscopic and reactivity studies of metal/silicon systems motivate the expansion of this research to include pincers with boryl and carbyl/carbene donors as well as to catalysis with earth-abundant metals. The project provides a training ground for undergraduate researchers and supports the expansion of both college- and high-school education efforts related to Dr. Whited's interests in inorganic synthesis and X-ray crystallography.