A new conceptualization for planning and delivering Architecture-Engineering-Construction (AEC) projects is needed because today's approaches all too often fail: projects are late, over budget, and accident prone. This unduly burdens public and private facility owners, other stakeholders, and society at large. Failure stems from the inadequacy of the planning methods being used, especially those that focus disproportionately on maximizing resource utilization while ignoring network effects and the systemic impacts of variability. This research counterposes a method based on Takt time. Takt refers to the beat with which work progresses; it is being used successfully in repetitive manufacturing (e.g., Lean Production). The use of Takt time in AEC project production is novel. The method has been piloted and is promising, but must be formally studied. This award supports fundamental research that involves designing, analyzing, and testing principles, methods, and computational optimization tools for Takt time planning (TTP). The objective of this method is to optimize project delivery speed within total cost limits, and to provide a mechanism for continuous improvement. Investigation of the potential uses of the TTP method to improve project delivery performance will advance the theory of project production. Use of the new planning model, once formulated, understood, and documented, will increase the reliability with which projects get delivered, to the benefit of all stakeholders. Students underrepresented in science, technology, engineering, and mathematics will be engaged in conducting this research. Research findings will be integrated into engineering curricula and disseminated to industry to promote the use of more systemic methods for planning and delivering facilities.

Existing planning models focus on maximizing resource utilization (point speed) and buffer for uncertainty using time (schedule buffers), which comes at the expense of throughput. This research flips the paradigm used in existing planning methods to one that focuses on overall project delivery performance and buffers with capacity. Planning using capacity means judiciously under-loading production resources, such as labor and equipment, to less than 100% utilization, so that they will have stand-by capacity to readily mitigate negative impacts of variation, thereby avoiding system-wide repercussions. Accordingly, a novel method for project planning will be designed and developed, based on the concept of Takt time. Computer algorithms will be created to automate the determination of zones and corresponding Takt times, suited to characteristics of various phases of project delivery. Their optimality and robustness will be established using Building Information Modeling (BIM) and discrete-event simulation. In parallel with the virtual study of TTP, the method will be deployed on actual projects so as to reveal socio-technical system characteristics that must be addressed for its successful deployment. Learning from actual projects will in turn inform further refinement of algorithms.

Project Start
Project End
Budget Start
2016-07-01
Budget End
2021-06-30
Support Year
Fiscal Year
2015
Total Cost
$349,608
Indirect Cost
Name
University of California Berkeley
Department
Type
DUNS #
City
Berkeley
State
CA
Country
United States
Zip Code
94710