Software and cognitive radios will greatly improve the capabilities of wireless devices to adapt their protocols and improve communication. Unfortunately, the benefits that such technology will bring are coupled with the ability to easily reprogram the protocol stack. Thus it is possible to bypass protections that have generally been locked within firmware. If security mechanisms are not developed to prevent the abuse of software radios, adversaries may exploit these programmable radios at the expense of the greater good. Regulating software radios requires a holistic approach, as addressing threats separately will be ineffective against adversaries that can acquire, and reprogram these devices. The AUSTIN project involves a multidisciplinary team from the Wireless Information Network Laboratory (WINLAB) at Rutgers University, the Wireless@Virginia Tech University group, and the University of Massachusetts. AUSTIN will identify the threats facing software radios, and will address these threats across the various interacting elements related to cognitive radio networks. Specifically, AUSTIN will examine: (1) the theoretical underpinnings related to distributed system regulation for software radios; (2) the development of an architecture that includes trusted components and a security management plane for enhanced regulation; (3) onboard defense mechanisms that involve hardware and software-based security; and (4) a algorithms that conduct policy regulation, anomaly detection/punishment, and secure accounting of resources. Developing solutions that ensure the trustworthy operation of software radios is critical to supporting the next generation of wireless technology. AUSTIN will provide a holistic system view that will result in a deeper understanding of security for highly-programmable wireless devices.