We are experiencing today an explosion in wireless network traffic driven by the rapidly growing number of mobile devices and bandwidth-hungry applications. Industry research predicts a 1000-fold increase in aggregate bandwidth demands by 2020. In spite of decades of research on improving spectrum efficiency in WiFi and cellular networks, existing techniques can only offer short-term solutions. Millimeter-wave (mmWave) technology in the unlicensed 60 GHz band, supported by the IEEE 802.11ad standard, has recently emerged as an alternative to legacy WiFi, promising multi-Gigabit per second throughput. The caveat, however, is the high attenuation and vulnerability to blockage of mmWave signals, due to the small wavelength. For example, the presence of a human body in the Line-of-Sight (LOS) between the transmitter and the receiver can result in a complete link outage. This project aims to implement an integrated research and education plan towards an ambitious vision of general purpose multi-Gigabit WLANs in the mmWave frequency bands that will offer always-on connectivity in home and enterprise environments but an order of magnitude higher throughput than current WiFi networks in 2.4/5 GHz bands.

To realize this vision, the project will develop a mmWave multi-layer WLAN architecture in a systematic, bottom-up fashion, starting with an understanding of the mmWave channel and its impact on higher layer performance and gradually moving up the layers of the network stack. Specifically, the project includes the following tasks: (i) measurement and modeling of the mmWave wireless channel, the interactions among different layers of the protocol stack, and the power consumption of mmWave network interfaces, (ii) model-driven MAC protocol design (rate and beam adaptation, adaptive frame aggregation, loss diagnosis) targeting both performance and power savings, (iii) a mmWave relay architecture for improving connectivity (in the case of human blockage), extending network coverage, and increasing wireless capacity, along with an online link measurement framework, and a set of metrics for optimal relay selection. The proposed architecture will be prototyped and evaluated on a 60 GHz testbed, consisting of a combination of off-the-shelf and proprietary hardware platforms, which will be developed as part of this project. Additionally, the project will develop a new multi-level realistic 60 GHz simulator for large scale evaluation and will make it available to the wireless networking community.

Agency
National Science Foundation (NSF)
Institute
Division of Computer and Network Systems (CNS)
Application #
1553447
Program Officer
Murat Torlak
Project Start
Project End
Budget Start
2016-02-15
Budget End
2022-01-31
Support Year
Fiscal Year
2015
Total Cost
$563,385
Indirect Cost
Name
Suny at Buffalo
Department
Type
DUNS #
City
Buffalo
State
NY
Country
United States
Zip Code
14228