Why there are so many flowering plants is an evolutionary conundrum that has puzzled biologists since Darwin's time. Although the group is evolutionarily quite young, there are over 250,000 species of flowering plants. A long-standing hypothesis suggests that reciprocal adaptation between plants and their pollinators (a process known as coevolution) is responsible for the spectacular number of species of flowering plants, but evidence supporting this idea is circumstantial. This project tests this hypothesis by measuring coevolution between yuccas and yucca moths. The yucca / yucca moth interaction is widely referred to as a model system for studying coevolution, but no study has ever conclusively demonstrated coevolution between them. This project will use experimental manipulations of yuccas and yucca moths to determine whether the plants and their pollinators are adapting to one another. Genomic technologies will identify genetic factors associated with plant and pollinator features and determine whether they are coevolving. Finally, genetic tools will be used to determine whether coevolution was involved in the evolution of new species of yuccas and yucca moths.
This project provides one of the first direct tests of the hypothesis that coevolution promotes the evolution of new species, and will significantly advance our understanding of how the diversity of life originated. Integral to the research are three novel educational initiatives: a citizen science program involving the general public in field studies of coevolution, a summer research immersion course for undergraduates, and a program to train a postdoctoral scientist in best practices for integrating teaching and research.