The COVID-19 pandemic presents an unprecedented challenge to public and private institutions to safely reopen public spaces, including workspaces and schools. However, we have little guidance on how to manage the use of shared spaces in light of a highly transmissible, but invisible, pathogen. The fundamental aim of this project is to better understand how SARS-CoV-2 spreads in built environments. Predictions generated by mathematical modeling will be experimentally tested using a surrogate non-pathogenic virus. This project presents a new paradigm where the likelihood of infected individuals being present, the amount and manner of viral shedding, the locations of viruses over time, and the usage-needs of a location provide for a major advancement in the assessment of public space occupancy and usage. The ultimate goal is to develop practices capable of limiting virus transmission and meeting the current worldwide challenge to public health. Recommendations will resemble established building and fire codes, which regulate how space is allotted per occupant based upon design and usage requirements; our analyses will generate a ?COVID Code? that can be generalized for use during future outbreaks. This research will also provide training opportunities for students and postdoctoral scholars.

A recently developed computational model (the Ephemeral Island Metapopulation Model (EIMM)) that applies metapopulation theory to explain how pathogens persist in hospital environments will be revised to address the spatial spread of SARS-CoV-2 within built environments. The EIMM defines aspects of the built environment as distinct habitable zones of occupancy (?demes?) in much the same manner as human hosts are considered, but these demes have their own biological parameters relevant to the survival and transmission of SARS-CoV-2. The number and size of both living and non-living demes, instead of human hosts alone, are used to model size and location of pathogen populations using ecologically relevant parameters, such as growth rate, population size, and carrying capacity. An enveloped bacteriophage phi6 will be used to validate model expectations as well as test control strategies in real environments such as classrooms. The goal is to test which interventions suggested by the EIMM minimize opportunities for phage phi6 spread in shared spaces, and this information can be adapted to provide estimates of how various interventions would affect SARS-CoV-2 persistence and transmission.

This RAPID award is made by the Ecology and Evolution of Infectious Diseases Program in the Division of Environmental Biology, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Agency
National Science Foundation (NSF)
Institute
Division of Environmental Biology (DEB)
Type
Standard Grant (Standard)
Application #
2032634
Program Officer
Katharina Dittmar
Project Start
Project End
Budget Start
2020-06-01
Budget End
2021-05-31
Support Year
Fiscal Year
2020
Total Cost
$146,711
Indirect Cost
Name
CUNY Queens College
Department
Type
DUNS #
City
Flushing
State
NY
Country
United States
Zip Code
11367