The Major Research Instrumentation (MRI) award for Lamar University (LU) supports acquisition of a Transmission Electron Microscope (TEM) with capabilities that include high resolution imaging, electron diffraction, spectroscopic and compositional analysis. The TEM will promote fundamental and applied scholarly research activities in the areas of nanomaterials, energy storage, energy harvesting, water and air quality, catalysis, functional materials, biomaterials, and materials and bio sciences; as well as broaden the research and collaborative opportunities for faculty. More importantly, it will enhance an in-depth understanding of the structure-property-performance correlations of material systems from the micro to nano level while providing insights to the fundamental science through experimental observations. In addition, the undergraduate and graduate students from the College of Arts & Sciences and College of Engineering at LU will receive TEM-specific education encompassing advanced microscopy, electron diffraction, electron-material interactions, materials physics and chemistry, bio imaging, X-ray based chemical composition analysis of material systems, and nanoscience and nanotechnology. Undergraduates will receive TEM operational training through course curricula and research projects; whereas graduate students will undertake a full course (long semester) with applied learning through hands-on training. The TEM will benefit several courses offered across the campus for science and engineering students at the undergraduate and graduate levels. It will also enrich the research and educational training of all the students expanding their contemporary skills and increasing opportunities in education, research and industry careers. The TEM at LU will also improve faculty inter- and multi-disciplinary collaborative opportunities within the University as well as other Universities and the industries. It will very well serve the research and educational needs of many nearby Colleges and Universities, and also the local chemical, materials, and oil and refinery industries. It will enhance the visibility of LU for scholarly activity in the local/global research and educational communities, and industries and help in recruiting and retaining high quality students and faculty. The TEM will play a highly stimulating role in K-12 outreach programs and expand the role of LU in the Southeast Texas through STEM activities by providing exposure of a TEM as a nanoscience/advanced microscopy tool to the middle and high school students, and underrepresented minority students, and teachers augmenting their interest and participation in STEM related education and projects.

With this MRI award, LU will procure a TEM with a resolution capability of 0.2 nm (for lattice) and 0.38 nm (for point image). This acquisition enables interdisciplinary research across engineering and science disciplines to study the structure-property-performance correlations from micro to nano level in the fields of energy storage, catalysis, air and water quality, polymers, ferroelectric materials, nanocomposites and biomaterials research. These research investigations will help in overcoming some of the important bottlenecks in catalysis, energy storage materials performance, green synthesis, chemical, bio and natural sciences through structural and compositional analysis. Most importantly, it will provide an edge over tailoring the structures and thereby the functional properties of materials at different length scales accordingly. It is also anticipated to boost the opportunities for design of new material systems ranging from micro to nano size with a close controllability over their size, structure, porosity, composition and physio-chemical properties. High resolution capability of the TEM is also very critical to gain insights into the arrangements of atoms, planar and porous structures in catalysts, supercapacitor and battery electrodes, hydrogen storage materials, and ferroelectrics. The energy dispersive x-ray analysis (EDX) detector with a capability of elemental mapping in conjunction with a scanning transmission electron microscopy (STEM) will provide chemical composition and dispersion of phases at the atomic level and enhance the understanding of their role in effective functionality in catalysis, electrochemical and biological/biomedical performances etc. This high end research capability will also bridge the research between engineering and basic sciences, and open up the opportunities for faculty/students to work on complex projects that are broader in scope. Currently, several on-going projects that will benefit with this TEM include -(i) Processing and characterization of nanomaterials for battery and supercapacitor electrode applications, (ii) Synthesis and characterization of nano catalysts for CO2 sequestration and biofuel production, (iii) Processing and analysis of biogenic nanocomposites and fibers for drug delivery, biosensor and optoelectronic applications, (iv) Green synthesis of nanoparticles within phototrophic organisms, (v) Chemistry-Microstructure-Mechanism studies of Polymer/Carbon Nanocomposites for environmental and biological applications, (vi) Structural characterization of H-bonded Nano ferroelectrics, (vii) Nano-textured dustophobic coatings for solar cell applications, and (viii) Development and characterization of biologically active nano engineered particles.

Agency
National Science Foundation (NSF)
Institute
Division of Materials Research (DMR)
Type
Standard Grant (Standard)
Application #
1625411
Program Officer
Leonard Spinu
Project Start
Project End
Budget Start
2016-09-01
Budget End
2017-08-31
Support Year
Fiscal Year
2016
Total Cost
$525,000
Indirect Cost
Name
Lamar University
Department
Type
DUNS #
City
Beaumont
State
TX
Country
United States
Zip Code
77705