Nontechnical Abstract: The University of Delaware – Materials Research Science and Engineering Center (UD MRSEC) is a network rich in scientific opportunity, spanning UD and several strategic external academic and national laboratory partnerships, including U. of Pennsylvania and the National Institute of Standards & Technology (NIST). Also known as the UD Center for Hybrid, Active, and Responsive Materials (UD CHARM), the Center is advancing foundational understanding of new materials driven by theoretical and computational predictions paired with cutting-edge experiments to enable the integration of unconventional, ultra-small, building blocks. One interdisciplinary research group (IRG) is targeting the creation of new bioinspired organic materials with the capacity to function as nanoscale machines. A second IRG aims to create hybrid inorganic quantum materials that enable new optoelectronic circuits/devices and precise control of electromagnetic radiation. With this fundamental approach in both IRGs, transformative advances in materials science are expected, enabling critical innovations in biomedicine, security, sensing, adaptable materials, and soft robotics. The close physical proximity of UD to many of the major partner institutions and industrial stakeholders, facilitates frequent in-person research, education, and outreach interactions. Furthermore, UD CHARM is providing an exciting materials science platform for diversity and education programming to under-resourced youth – targeting students from groups underrepresented in science via partnerships with two historically black colleges and universities (HBCUs, Delaware State U. and Claflin U.), a pre-college effort focused on providing undergraduate pathways for Black and Latinx youth, and an education initiative geared toward mentoring younger students in basic science and engineering.

Technical Abstract

UD CHARM is harnessing the integrated power of computational design, innovative synthetic and manufacturing processes, and nanoscale characterization to unlock the substantial promise of complex synthetic materials at multiple length/time-scales - leveraging strategic control of interfaces, interactions, and synthetic specificity. This MRSEC is nucleating activities to become a hub of interdisciplinary integration and infrastructure development to drive cross-cutting materials innovation. One IRG is pioneering the use of computationally-directed pathways for non-natural amino acid assembly and functionalization to achieve emergent properties in peptide active materials, such as concerted and precise larger-scale, directed molecular motion. The team is exploiting the programmability of peptide molecular shape and chemical sequence, enabled by non-natural amino acid incorporation and solution/film processing, to develop new bioinspired materials with targeted architectures and the capacity to generate simple machine movement – all guided by computational insights. A second IRG is creating hybrid quantum materials that control terahertz (THz) functionality, to enable unprecedented control over THz radiation and THz integrated circuits/devices. The team is manipulating interfaces and interactions between constituents to create hybrid materials that seamlessly convert between THz excitations of each constituent, enable nonlinear interactions ideal for modulators or gates, and enable controlled formation and modulation of hybridized quantum states. UD CHARM is creating a materials pipeline by teaching/training in a cohesive mentoring loop. Major programming impacts include: (1) under-served K-12 students via creation of a Delaware Science Program, (2) Black and Latinx high school students by interfacing with the TeenSHARP-DE college prep program, (3) HBCU undergraduates (UGs) and faculty through a ‘Pathways to Graduate School’ program, and (4) UGs via an REU program with industrial/international partners.

This project is jointly funded by the Materials Research Science and Engineering Centers (MRSEC) Program in the Division of Materials Research (DMR), the Established Program to Stimulate Competitive Research (EPSCoR), and the Office of Multidisciplinary Activities (OMA) in the Directorate for Mathematical and Physical Sciences (MPS).

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Agency
National Science Foundation (NSF)
Institute
Division of Materials Research (DMR)
Type
Cooperative Agreement (Coop)
Application #
2011824
Program Officer
Miriam Deutsch
Project Start
Project End
Budget Start
2020-09-01
Budget End
2026-08-31
Support Year
Fiscal Year
2020
Total Cost
$6,500,000
Indirect Cost
Name
University of Delaware
Department
Type
DUNS #
City
Newark
State
DE
Country
United States
Zip Code
19716