This collaborative mathematics research project by Fedor Nazarov, Serguei Treil and Alexander Volberg is in the area of harmonic analysis. Nazarov, Treil and Volberg will concentrate their efforts on several well-known hard problems in non-homogeneous harmonic analysis, geometric measure theory, and spectral theory. The common theme among majority of the problems is the so-called "universality" phenomenon, i.e. the fact that in many situations the boundedness of one operator (or a small collection of operators) implies that a much wider class of operators is bounded as well. Most of the problems lie in the realm of the non-homogeneous harmonic analysis, where underlying sets and measures are highly irregular. Singular integral operators with respect to singular measures and very irregular sets appear naturally in many problems of analysis. One of the motivations for the one-weight non-homogeneous case was the study of analytic capacity. The more sophisticated two-weight estimates of singular operators appear naturally in spectral theory and in the perturbation theory of self-adjoint operators. These problems are notoriously difficult, but using new techniques recently developed by Nazarov, Treil and Volberg and other researchers, they expect to make fundamental progress in the problems.

This collaborative mathematics research project by Nazarov, Treil and Volberg is focused in the field of harmonic analysis, which is known to have fundamental applications to other disciplines, most notably to the analysis of large data sets, to image processing, and to the study of wave propagation. The results and mathematical tools that will be developed through this project could also have a bearing on other areas of mathematics, such as mathematical physics, partial differential equations, probability. The project will provide a good training ground for graduate students as well as for mathematicians at the beginning of their careers. Nazarov, Treil and Volberg anticipate an active involvement of their graduate students and postdocs in the project.

Agency
National Science Foundation (NSF)
Institute
Division of Mathematical Sciences (DMS)
Application #
1301579
Program Officer
Tomek Bartoszynski
Project Start
Project End
Budget Start
2013-06-01
Budget End
2018-05-31
Support Year
Fiscal Year
2013
Total Cost
$347,510
Indirect Cost
Name
Brown University
Department
Type
DUNS #
City
Providence
State
RI
Country
United States
Zip Code
02912