The preparation of general education teachers to support the mathematics learning of students with disabilities is critical, as students with disabilities are overrepresented in the lower ranks of mathematics achievement. This project aims to address this need in the context of elementary mathematics teacher preparation through the development and use of mixed reality simulations. These simulations represent low-stakes opportunities for preservice teachers to practice research-based instructional strategies to support mathematics learning, and to receive feedback on their practices. Learning units that use the simulations will focus on two high leverage practices: teacher modeling of self-monitoring and reflection strategies during problem solving and using strategy instruction to teach students to support problem solving. These high-leverage teaching practices will support teachers engaging all students, including students with disabilities, in conceptually sophisticated mathematics in which students are treated as sense-makers and empowered to do mathematics in culturally meaningful ways.
The project work encompasses three primary aims. The first aim is to develop a consensus around shared definitions of high-leverage practices across the mathematics education and special education communities. To accomplish this goal, the project will convene a series of consensus-building panels with mathematics education and special education experts to develop shared definitions of the two targeted high leverage practices. This work will include engaging with current research, group discussion, and production of documents with specifications for the practices. The second aim is to develop learning units for elementary mathematics methods courses grounded in mixed reality simulation. These simulations will allow teacher candidates to enact the high leverage practices with simulated students and to receive coaching on their practice from the research team. The impact of this work will be assessed through the analysis of interviews with teacher educators implementing the units and observations and artifacts from the implementations. The third aim will be to assess the effectiveness of the simulations on teacher candidates’ practices and beliefs through small-scaled randomized control trials. Teacher candidates will be randomly assigned to conditions that address the practices and make use of simulations, and a business as usual condition focused on lesson planning, student assessment, and small group discussions of the high leverage practices. The impact of the work will be assessed through the analysis of baseline and exit simulations, measures of teacher self-efficacy for teaching students with disabilities, and observations of classroom teaching in their clinical placement settings.
The Discovery Research preK-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools. Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.