The objectives of the research are to: (1) develop improved, multi-scale methods to quantify the puddle-filling and puddle-merging (P2P) overland flow process under control of microtopography, with focus on characterizing discontinuity, variability, and hierarchy of overland flow; (2) develop a P2P overland flow modeling system that integrates the new methods and modeling techniques in a user-friendly Windows interface; and (3) improve hydrology education at all levels by providing an interactive, education-enhanced P2P teaching-learning software.

Preliminary field data and previous studies highlight the important role of microtopography in overland flow generation and evolution, and emphasize the need for bridging the macro- and micro-scale hydrologic studies. Major challenges herein are: (1) effects of soil surface roughness on the P2P overland flow process are scale dependent; and (2) simply incorporating micro-scale effects of soil roughness in a larger-scale modeling framework can be computationally prohibitive. In this project, multi-scale methods, which involve dynamic puddle delineation and "point" and "area" modeling at two scale levels, will be developed to cope with these challenges and improve computational efficiency. Specifically, a quasi-three-dimensional model will be developed to simulate vertical infiltration into layered soils and rainfall excess at "points," and mass exchange and hydraulic connections between "points" over "areas" (puddle filling-connecting-merging process). The "point" modeling will be implemented on the cell/grid scale, while the "area" modeling will explicitly account for the effects of microrelief of cells on small-scale overland flow processes, such as flow types (microchannel flow or sheet flow) determined by an inundated factor. The P2P overland flow mechanism will also be examined by a series of laboratory and field experiments that reflect variability in soils, their spatial combination, roughness, and rainfall characteristics. Microrelief of the soil surfaces will be measured by using the laser scanner. The fractal model will be used to quantify soil surface roughness and scale effects of roughness will also be analyzed.

A Windows-based P2P overland flow modeling system will be developed to enhance applications of the new methods. An interactive P2P teaching-learning software will be further developed for improving hydrology education at all levels. The educational software, with enhanced visualization capabilities, will integrate the new modeling techniques, computer-guided self-learning center, and a set of education-oriented tools and databases in a user-friendly Windows interface. The teaching-learning software will be used as the core for graduate and undergraduate hydrology courses, as well as other outreach programs.

Intellectual Merit and Broader Impacts: The research on multi-scale P2P overland flow methods should be the first investigation of characterizing microtopography-controlled overland flow from a multi-scale perspective. The new methods will improve the understanding of intrinsic natures of overland flow: discontinuity, variability, and hierarchy. The models will be valuable tools for analyzing overland flow generation and evolution, and quantifying dynamic changes in the contributing areas of storm runoff, which is critical to nonpoint source pollution. Thus, this study will also have substantial impacts on environmental and ecological research and broad interdisciplinary application potentials. The user-friendly Windows P2P modeling system will particularly improve the accessibility to the new methods by the entire hydrology community. As an integral part of the NSF-funded LTER program, this unique hydrologic study will also provide valuable support for other LTER projects.

The state-of-the-art, interactive software will be the first comprehensive teaching-learning tool specially designed for hydrology education at all levels. The software, with enhanced visualization capabilities, the computer-guided self-learning center, and hydrologic tools and databases, will not only effectively promote students' learning and interest in hydrologic sciences, but also benefit instructors by creating an active and innovative teaching-learning environment in their classes. Most importantly, the work will give the underrepresented students an excellent opportunity to conduct the cutting-edge hydrologic research and gain skills and experiences that are invaluable to their studies and future career.

Agency
National Science Foundation (NSF)
Institute
Division of Earth Sciences (EAR)
Application #
0645270
Program Officer
L. Douglas James
Project Start
Project End
Budget Start
2007-03-01
Budget End
2009-01-31
Support Year
Fiscal Year
2006
Total Cost
$241,911
Indirect Cost
Name
Grand Valley State University
Department
Type
DUNS #
City
Allendale
State
MI
Country
United States
Zip Code
49401