Siderophile elements are those chemical elements with a strong preference for metal compared to silicates. For the Earth, the abundances of these elements were strongly affected by segregation of the metallic core, and also likely affected by processes that occurred exclusively in the silicate portion of the early Earth (mantle and crust). For this project, we will conduct collaborative, synergistic research combining observations of siderophile element concentrations and isotopic compositions, with geodynamic modeling to study the origin and evolution of chemical heterogeneities in Earth's early mantle. The outcome of this work will be an improved understanding of the global processes that led to the establishment of siderophile element abundances in the mantle, as well as provide new insights to the differentiation and mixing histories of the mantle. One specific task will be to examine the petrologic and chronologic extents of 182W isotopic anomalies in terrestrial rocks. As the decay product of the short-lived 182Hf (t½ = 9 million years), variations in 182W likely reflect processes that occurred within the mantle during the first 30 million years of Earth history. Both ancient rocks, such as komatiites for which we have already identified isotopic anomalies, and modern rocks, such as mid-ocean ridge basalts, oceanic peridotites, and ocean island basalts will be examined. Complementary to this work, we will model large-scale processes, such as magma ocean crystallization, with the potential to generate mantle domains characterized by the elemental abundances and fractionations necessary to produce the observed isotopic variances.

This project will involve serious contributions from undergraduate participants at the University of Maryland (UMd). As such, some of the research proposed here will help to indoctrinate budding scientists in the methods used in isotopic geochemistry and geodynamic modeling, as well as the presentation of results. The project will also involve postdocs at both institutions. The collaborative nature of the proposal, as well as the close proximity of the UMd and Carnegie Institution for Science, will allow frequent, direct interactions involving both geochemical data acquisition and geodynamic modeling of the results for the PI?s and postdocs working on this project.

Agency
National Science Foundation (NSF)
Institute
Division of Earth Sciences (EAR)
Type
Standard Grant (Standard)
Application #
1265147
Program Officer
Robin Reichlin
Project Start
Project End
Budget Start
2013-08-01
Budget End
2015-02-28
Support Year
Fiscal Year
2012
Total Cost
$170,000
Indirect Cost
Name
Carnegie Institution of Washington
Department
Type
DUNS #
City
Washington
State
DC
Country
United States
Zip Code
20005