The objective of this research is the development of a new type of a scanning local probe microscope capable of obtaining chemical information with nanoscale resolution and to utilize this microscope in a wide range of applications pursued by different research groups at Rice University. The microscope will consist of a metallodielectric nanoparticle mounted or integrated as an Atomic Force Microscope tip (AFM) tip. The nanoparticle will be designed to have plasmon resonant response in the infrared region of the spectrum (2.7 -10 microns in wavelength; 1000-3600 cm-1). The strong electromagnetic field enhancements associated with the excitations of plasmons in the probe tip will dramatically enhance the cross sections for infrared excitation of dipole active vibrational modes in the tip-sample junction
This project will result in a new and unique nanoscale spectroscopic tool that will be useful across a very broad range of technical applications, such as fundamental nanoscale studies in the physical and chemical sciences, a valuable new imaging probe in the life sciences, and a unique, breakthrough sensor technology for environmental analysis and detection of trace chemical species. The highly collaborative multidisciplinary instrument development team consists of researchers in the departments of Electrical and Computer Engineering, Chemistry, Physics, and Bioengineering. Two courses will be developed during this project addressing the theoretical and experimental aspects of nanoscale instrument component design and fabrication. A large number of users for this instrument have been identified within the Rice science and enginee