Non-intrusive and ambulatory health monitoring of patients' vital signs over Wireless Body Area Networks (WBANs) provides an economical solution to rising costs in the healthcare system. However, due to the lack of security in the operation and communication of resource-constrained medical sensor nodes, the health and medical information provided by the WBANs may not be trusted. To address this issue, lightweight security solutions that are suitable for capability and resource limited body sensor devices must be provided to authenticate the data transmission. The goal of this research project is to develop a lightweight authentication system for resource-constrained WBANs. Findings from the proposed project will provide support for ensuring real-time delivery of accurate and secure medical information in WBANs. The proposed research will also advance the fields of WBANs and trustworthy biomedical computing for healthcare applications. The proposed theories, models, and simulation code can be used by engineers and researchers to design and evaluate security mechanisms for WBAN applications. In addition, an important education objective tightly coupled with the proposed research is to recruit and educate future generation of WBAN engineers. This will be accomplished through curriculum development, student mentoring, and community outreach in these fast changing technical fields of WBAN system engineering, security and mobile health (mHealth).

The proposed research aims at realizing physical layer security approaches for WBANs and developing innovative key agreement and message authentication mechanisms. Unlike existing approaches (e.g., biometric-based approaches), the proposed authentication system does not require additional hardware, error reconciliation process and bit synchronization, and thus is suitable for resource-constrained and capacity-limited medical sensor nodes in WBANs. The proposed research tasks include (1) theoretical studies; (2) design of key agreement schemes; (3) development of message authentication system; and (4) system implementation and validation. The theoretical studies focus on the connections between the channel reciprocity, channel dependency and key generation. Based on the results of theoretical studies, practical key agreement schemes that use a set of dynamic wireless channel features among the communication partners will be developed. The project will then design a lightweight authentication system that is adaptive to wireless channels for securing medical data transmission in WBANs. Finally, the project will implement the proposed physical layer security approach in a real resource-constrained WBANs system and investigate the practical system performance limit through experiments. The findings from the project can provide guidelines for physical-channel based security system design and deployment of WBAN applications.

Project Start
Project End
Budget Start
2014-09-01
Budget End
2019-08-31
Support Year
Fiscal Year
2014
Total Cost
$155,912
Indirect Cost
Name
University of Massachusetts, Dartmouth
Department
Type
DUNS #
City
North Dartmouth
State
MA
Country
United States
Zip Code
02747