Nineteen million people, 6 percent of the US population, do not have reliable broadband and high data rate communications coverage due to inaccessibility in rural areas. Availability of such services is essential to education, jobs, health care, and the economic development of these areas. The objective of the proposed work is to develop a practical and affordable wireless communication system that covers and best fits the needs of rural areas. The proposed technology is particularly suitable for applications in areas with vast coverage requirements, rough terrain, and sparse access nodes and base stations.
The project involves the development of an integrative approach based on the utilization of "advanced" slow moving (or stationary but strategically placed based on sight planning) mobile nodes with extended monitoring and control capabilities to facilitate the use of advanced antennas and propagation technologies while not requiring changes in existing Medium Access Control (MAC) standards and upper layers of the ISO communications model. The proposed affordable wireless communication and connectivity technology in rural areas will have significant educational, job creation, health care, and economic development impact on minorities and underrepresented communities in the US and throughout the world. It represents a solution that fits the long unaddressed needs of these communities. Demonstrating the proposed technology and its use in rural areas in Hawaii, and perhaps beyond, will have significant economic, educational, and health care (remote patient monitoring) benefits to these communities.
As wireless protocols and implementation standards continue to expand with additional capabilities to meet fast growing demands, it is also becoming more difficult to interface and integrate special needs such as those of rural areas with set protocols and standards in the ISO communication model. The proposed work addresses this issue, and an affordable, expandable, and effective system will be developed that utilizes innovative technology and research advances without requiring changes and adjustments in the MAC and upper layers of the ISO model. The proposed procedure is based on the use of the so called "advanced" nodes which include the use of "directional antennas," beam steering capabilities, integration of propagation modeling, implementation of cognitive spectrum sensing capabilities, and also providing networking topology controls in each of these nodes. Specific innovations include development of new broadband, dual polarization and low cost directional antenna array designs with beam steering capabilities and the implementation of multi-level details propagation modeling to enhance receivers performance while minimizing required computation time and resources. The proposed cognitive network system and the associated introduction of the "advanced" nodes, not only provide communication advantages such as extended range and area coverage using high gain antennas and the relatively lower power requirements when directional (rather than omnidirectional) antennas are used, but the integration of the communication channel links controls in these units facilitates interfaces between the proposed directional physical layer with the MAC and other upper layers in the ISO model without modification or alteration of set standards and protocols.
A team of investigators with expertise in antennas, propagation, and networking, is participating in this proposal. In addition to the extensive simulation and optimization studies, two "advanced" nodes prototype systems will be developed and tested in the vast and challenging terrain conditions in rural areas in the islands of Hawaii.